環(huán)氧樹脂/AlN復合材料:作為封裝材料,需要良好的導熱散熱能力,且這種要求愈發(fā)嚴苛。環(huán)氧樹脂作為一種有著很好的化學性能和力學穩(wěn)定性的高分子材料,它固化方便,收縮率低,但導熱能力不高。通過將導熱能力優(yōu)異的AlN納米顆粒添加到環(huán)氧樹脂中,可有效提高材料的熱導率和強度。TiN/AlN復合材料:TiN具有高熔點、硬度大、跟金屬同等數量級的導電導熱性以及耐腐蝕等優(yōu)良性質。在AlN基體中添加少量TiN,根據導電滲流理論,當摻雜量達到一定閾值,在晶體中形成導電通路,可以明顯調節(jié)AlN燒結體的體積電阻率,使之降低2~4個數量級。而且兩種材料所制備的復合陶瓷材料具有雙方各自的優(yōu)勢,高硬度且耐磨,也可以用作高級研磨材料。氮化鋁具有高絕緣耐壓、熱膨脹系數、與硅匹配好等特性,不但用作結構陶瓷的燒結助劑或增強相。廣州超細氮化鋁廠家
氮化鋁粉體的成型工藝有多種,傳統的成型工藝諸如模壓,熱壓,等靜壓等均適用。由于氮化鋁粉體的親水性強,為了減少氮化鋁的氧化,成型過程中應盡量避免與水接觸。另外,據中國粉體網編輯了解,熱壓、等靜壓雖然適用于制備高性能的塊體氮化鋁瓷材料,但成本高、生產效率低,無法滿足電子工業(yè)對氮化鋁陶瓷基片用量日益增加的需求。為了解決這一問題,近年來人們研究采用流延法成型氮化鋁陶瓷基片。流延法目前已成為電子工業(yè)用氮化鋁陶瓷的主要成型工藝。流延成型制備多層氮化鋁陶瓷的主要工藝是:將氮化鋁粉料、燒結助劑、粘結劑、溶劑混合均勻制成漿料,通過流延制成坯片,采用組合模沖成標準片,然后用程控沖床沖成通孔,用絲網印刷印制金屬圖形,將每一個具有功能圖形的生坯片疊加,層壓成多層陶瓷生坯片,在氮氣中約700℃排除粘結劑,然后在1800℃氮氣中進行共燒,電鍍后即形成多層氮化鋁陶瓷。天津耐溫氧化鋁廠家在室溫下,氮化鋁的表面仍能探測到5-10納米厚的氧化物薄膜。
氮化鋁陶瓷微觀結構對熱導率的影響:在實際應用中,常在AlN中加入各種燒結助劑來降低AlN陶瓷的燒結溫度,與此同時在氮化鋁晶格中也引入了第二相,致使熱傳導過程中聲子發(fā)生散射導致熱導率下降。添加燒結助劑引入的第二相會出現幾種情況:從分布形式來看,可分為孤島狀和連續(xù)分布在晶界處;從分布位置來看,可分為分布在晶界三角處和晶界其他處。連續(xù)分布的晶??蔀槁曌犹峁┝烁苯拥耐ǖ溃苯咏佑|AlN晶粒比孤立分布的AlN晶粒具有更高的熱導率,所以第二相是連續(xù)分布的更好;分布于晶界三角處的AlN陶瓷在熱傳導過程中產生的干擾散射較少,而且能夠使AlN晶粒間保持接觸,故而第二相分布在晶界三角處更好。此外,晶界相若分布不均勻,會導致大量的氣孔存在,阻礙聲子的散射,導致AlN的熱導率下降,晶界含量、晶界大小以及氣孔率對熱導率的表現也有一定的影響。因此,在AlN陶瓷的燒結過程中,可以通過改善燒結工藝的途徑,如提高燒結溫度、延長保溫時間、熱處理等,改善晶體內部缺陷,盡可能使第二相連續(xù)分布以及位于三叉晶界處,從而提高氮化鋁陶瓷的熱導率。
為什么要用氮化鋁陶瓷基板?因為LED大燈的工作溫度非常高。而亮度跟功率是掛鉤的,功率越大,溫度越高,再度提高亮度只有通過精細的冷卻設計或者散熱器件的加大,但是效果并不理想。能夠使其達到理想效果的只有氮化鋁陶瓷基板。首先氮化鋁陶瓷基板的導熱率很高,氮化鋁基片可達170-260W/mK,是鋁基板的一百倍。其次,氮化鋁陶瓷基板還有非常優(yōu)良的絕緣性,與燈珠更匹配的熱膨脹技術等一系列優(yōu)點。應用于電動汽車和混合動力汽車中的電力電子器件市場規(guī)模很大。而電力器件模塊氮化鋁陶瓷基板的技術和商業(yè)機遇都令人期待。復合材料,環(huán)氧樹脂/AlN復合材料作為封裝材料,需要良好的導熱散熱能力,且這種要求愈發(fā)嚴苛。
提高氮化鋁陶瓷熱導率的途徑:提高氮化鋁粉末的純度,理想的氮化鋁粉料應含適量的氧。除氧以外,其他雜質元素如Si、Mn和Fe等,也能進入氮化鋁晶格,造成缺陷,降低氮化鋁的熱導率。雜質進入晶格后,使晶格發(fā)生局部畸變,由此產生應力作用,引起位錯、層錯等缺陷,增大聲子散射,故應該提高氮化鋁的粉末的純度。改進氮化鋁粉末合成方法,制備出粒徑在1μm以下,含氧量1%的高純粉末,是制備高導熱氮化鋁陶瓷的前提。此外,對含燒結助劑的氮化鋁粉末,引入適量的碳,在制備氮化鋁陶瓷的燒結過程中,于致密化之前,先對氮化鋁粉末表面的氧化物進行還原碳化,也能使氮化鋁陶瓷的熱導率提高。陶瓷注射成型粘結劑須具備以下條件:流動特性好,注射成型黏度適中,且黏度隨溫度不能波動太大。球形氮化鋁
氮化鋁的電阻率較高,熱膨脹系數低,硬度高,化學穩(wěn)定性好但與一般絕緣體不同。廣州超細氮化鋁廠家
高性能氮化鋁陶瓷取決于氮化鋁粉體的質量,到目前為止,制備氮化鋁粉體有氧化鋁粉碳熱還原法、鋁粉直接氮化法、化學氣相沉積法、自蔓延高溫合成法等多種方法,各種方法都有其自身的優(yōu)缺點。綜合來看,氧化鋁粉碳熱還原法和鋁粉直接氮化法比較成熟,是目前制備高性能氮化鋁粉的主流技術,已經用于工業(yè)化大規(guī)模生產。氮化鋁粉體制備的技術發(fā)展趨勢主要表現在兩個方面:一是進一步提升氮化鋁粉體的性能,使之能夠制造出更高熱導率的氮化鋁陶瓷產品;二是進一步提升氮化鋁粉體批次生產穩(wěn)定性,增大批生產量,降低生產成本。我國目前的高性能氮化鋁粉基本依賴進口,不但價格高昂,而且隨時存在原材料斷供的風險。因此,實現高性能氮化鋁粉制造技術的國產化,已成為當務之急。廣州超細氮化鋁廠家