我們通常用Na2O/SiO2來表示體系的堿度。一般而言,堿度增加,硅鋁原料的溶解度增加,硅鋁酸鹽聚合度降低,使溶液中的過飽和度增大,從而加快成核速度,結果縮短了誘導期,使之晶化速度加快。此外,增大堿度時會使**終產(chǎn)品的粒子變小并且粒徑分布變窄,如在無模板條件下合成具有6nm**小尺寸的EMT沸石分子篩。另外當體系的堿度增大,有利于生成富鋁的沸石。在無有機模板存在的條件下,通過讓無機堿充當模板的作用來合成如Beta,RUB-13,ZSM-12,ZSM-23,MCM-68等沸石分子篩,這些沸石分子篩不僅是高度富鋁的而且還是高度富有無機金屬陽離子的。另一個沸石合成的條件是在含有氟離子的中性或酸性條件下來合成沸石分子篩,氟離子在分子篩合成中取代了堿的作用,來溶解硅鋁酸鹽凝膠。在氟體系下合成的純硅分子篩缺陷較少,也更容易得到比較完美的大單晶。[5]分子篩陳化從原料的均勻混合到升溫晶化前的靜止過程,這一個階段被叫做陳化。在陳化過程中,凝膠的組成、結構都是會發(fā)生變化的,陳化過程有時甚至是緩慢的成核過程,導致分子篩生長周期的縮短。**為典型的例子是在合成FAU分子篩時使用的Y導向劑就需要所有反應物混合均勻后室溫陳化。它在結構上有許多孔徑均勻的孔道和排列整齊的孔穴,不同孔徑的分子篩把不同大小和形狀分子分開。嘉定區(qū)制造催化劑有什么
在合成中模板劑和吸附水是存在于它的孔道中的。當然,當在合成體系中有鋁存在的條件下,則有兩種四面體:硅氧四面體([SiO4]0)和鋁氧四面體([AlO4]-),并且鋁氧四面體是存在一個負電荷的,通過組裝合成了硅鋁的具有MFI結構的分子篩,由于這種結構本身帶有一定的負電荷,因此必然要通過額外的陽離子來平衡,使其整體**終呈現(xiàn)電中性。而磷鋁分子篩則是磷氧四面體([PO4]+)和鋁氧四面體([AlO4]-)嚴格交替構成,骨架呈電中性。當然,在初級結構單元與初級結構單元的連接中,要遵守Lowenstein規(guī)則:在硅鋁骨架結構中,鋁與鋁不能相鄰;在磷酸鹽骨架結構中,如SAPO-34,鋁是不能和二價或者三價金屬原子相鄰、以及磷不能與硅或磷相連的。[5]分子篩次級結構單元分子篩的骨架結構由初級結構單元進行有限或者無限的連接后而形成的。有限的結構單元,如次級結構單元通常是指由TO4四面體通過共同使用定點的氧原子,從而按照不同的連接方式組成的多元環(huán)結構,比較常見的環(huán)結構如四元環(huán)、五元環(huán)、六元環(huán)、雙四元環(huán)和雙六元環(huán)。現(xiàn)在所發(fā)現(xiàn)的為18種次級結構單元。例如4-4次級結構單元,它所**的的是兩個四元環(huán),即雙四元環(huán)。正如我們所熟知的A型分子篩。閔行區(qū)品質催化劑銷售廠它的吸附能力高、選擇性強、耐高溫。***用于有機化工和石油化工,也是煤氣脫水的優(yōu)良吸附劑。
這是因為導向劑經(jīng)過陳化產(chǎn)生了微小的沸石晶核,并且含有大量的六元環(huán)。[5]分子篩晶化溫度與時間對于合成沸石分子篩,溫度是一個很重要的因素。溫度變化會影響水在反應釜中的壓力的變化、硅鋁酸鹽的聚合狀態(tài)和聚合反應、凝膠的生成和溶解與轉變、分子篩的成核與生長以及介穩(wěn)相間的轉晶。相同的體系在不同的溫度下可能會得到完全不一樣的物相,溫度越高得到的沸石的尺寸和孔體積越小,晶體骨架密度相應增大。一般而言在150°C以下,初級結構往往是四元環(huán)或六元環(huán),而當溫度高于150°C,則往往是五元環(huán)的初級結構單元。由此可見,在高溫水熱條件下,無機物(主要是硅鋁酸鹽物種)的造孔規(guī)律和晶化溫度與水蒸汽壓之間存在著密切的聯(lián)系。晶化時間往往也是分子篩合成的一個重要因素。晶化時間不夠常常會有大量的原料未轉化,時間過長,往往會發(fā)生晶體轉晶的現(xiàn)象,一般由比較空曠的結構轉化為比較致密的結構。晶化時間與晶化溫度往往是相輔相成的,降低溫度,就要增加晶化時間;升高溫度,有時就要縮短晶化時間。[5]分子篩展望編輯語音近年來,沸石分子篩由于具有獨特的性能,已經(jīng)在吸附分離、催化等領域取得了***的應用。但是對某些沸石分子篩的性能優(yōu)劣問題認識不夠深入。
下列影響因素在沸石分子篩的合成中占有很重要的地位,主要包括:反應物的組成、硅鋁比、堿度、陳化、晶化溫度與時間等等。研究這些因素對于合成沸石具有很重要的意義。[5]分子篩反應物合成沸石分子篩的基本原料有:硅源、鋁源、堿源、金屬陽離子、其它礦化劑、模板劑和水等。常用的硅源有白炭黑、硅溶膠、固體硅膠、有機硅酸酯、水玻璃等。常用的鋁源有偏鋁酸鈉、硫酸鋁、薄水鋁石、金屬鋁、硝酸鋁、異丙醇鋁、氫氧化鋁等。堿源有氫氧化鈉,氫氧化鉀等。金屬陽離子包括堿金屬陽離子和堿土金屬離子如:Li+、Na+、K+、Ca2+、Ba2+等。分子篩合成的礦化劑有兩種:氫氧根離子和氟離子。模板劑有各種含氮的有機物、季磷鹽等。初始凝膠的配比往往能夠決定**終產(chǎn)物的類型。**初投料的反應物的不同會導致**后的生成物的完全不同,如,陽離子不同可以導致分子篩產(chǎn)物的不同,鈉離子容易導向LTA、CAN、FAU、GIS等分子篩骨架的生成;而鉀離子則容易導向LTL、CHA、ERI等類型的分子篩骨架。即使**初的反應物相同只是反應物含量有微少的差別也極有可能得到不同的物相,如堿度對分子篩合成體系的影響。另外當所有物料比例都相同。十元氧環(huán)的有ZSM-5、ZSM-11等部分 ZSM系列分子篩。
也并沒有液相直接來參與沸石分子篩的成核以及晶體的生長。首先,沸石分子篩合成所需的各種原料混合后,主要物種硅酸鹽與鋁酸鹽聚合生成硅鋁酸鹽初始凝膠。同時,凝膠間液相雖然也產(chǎn)生,然而液相部分并不參與晶化成核的過程中。其次,所形成的硅鋁酸鹽初始凝膠在OH-離子的作用下卻不斷發(fā)生解聚與結構重排,從而形成某些沸石晶化所需要的初級結構單元。**后,這些初級結構單元進一步圍繞著水合陽離子發(fā)生重排構成多面體,這些多面體再進一步聚合、連接、形成沸石分子篩晶體。70年代,荷蘭科學家Mcnicol等人通過使用分子光譜技術來追蹤LTA型沸石分子篩的整個晶化過程,從而在實驗上為固相轉變機理給予充分的根據(jù)。90年代,干膠轉化的合成方法的提出也為固相轉變機理增加了一個實例。另外,**近幾年發(fā)展起來的固相無溶劑合成的方法的提出也是在一定程度上為固相轉變機理提供相應的證據(jù)。[5]分子篩液相轉變機理液相轉變機理首先由Kerr和Ciric提出,與固相轉變機理的提出幾乎是在同一個時期。他們認為:沸石分子篩晶體的成核和生長是在溶液中直接進行,初始凝膠慢慢的溶解到溶液中,生成了活性物種硅鋁酸根離子,然后再發(fā)生縮合,慢慢的形成了沸石分子篩所需要的結構單元。這種結合形式,構成了具有分子級、孔徑均勻的空洞及孔道。長寧區(qū)現(xiàn)代化催化劑貨源充足
具有十二元氧環(huán)的有Y型分子篩 (x= 3.1~6.0)和絲光沸石(x=9~11)。嘉定區(qū)制造催化劑有什么
再進一步生成了沸石分子篩。首先,沸石分子篩所需的原料混合后,主要物種硅酸鹽與鋁酸鹽聚合生成硅鋁酸鹽初始凝膠。這種硅鋁酸鹽凝膠是在高濃度條件下快速形成的,因此具有很高無序度,但是這種硅鋁酸鹽凝膠中可能含有某些初級結構單元,如:四元環(huán)、六元環(huán)等等。同時,這種凝膠和液相之間建立了溶解平衡。另外,硅鋁酸根離子的溶度積與凝膠的結構和溫度息息相關,隨著晶化溫度的變化,這種凝膠和液相之間建立起新的凝膠和溶液的平衡。其次,液相中多硅酸根與鋁酸根濃度的增加導致晶核的形成,然后是沸石分子篩晶體的生長。在沸石分子篩的成核和晶體生長過程中,消耗了液相中的多硅酸根與鋁酸根離子,從而引起硅鋁凝膠的繼續(xù)溶解。由于沸石晶體的溶解度小于無定形凝膠的溶解度,**后結果是凝膠的完全溶解,沸石分子篩晶體的完全生長。Zhdanov的實驗表明,沸石分子篩晶體生長速度與液相中多硅酸根和鋁酸根離子的濃度息息相關,并且晶化過程中液相各組分濃度是不斷變化的,這些實驗結果支持了液相轉變機理。對液相轉變機理**有利的證明是從液相中直接晶化沸石分子篩,Koizumi等人直接從澄清溶液中合成出了SOD,GIS、FAU等沸石分子篩。嘉定區(qū)制造催化劑有什么
上海恒業(yè)分子篩股份有限公司主營品牌有上海恒業(yè),發(fā)展規(guī)模團隊不斷壯大,該公司生產(chǎn)型的公司。上海恒業(yè)是一家股份有限公司企業(yè),一直“以人為本,服務于社會”的經(jīng)營理念;“誠守信譽,持續(xù)發(fā)展”的質量方針。以滿足顧客要求為己任;以顧客永遠滿意為標準;以保持行業(yè)優(yōu)先為目標,提供***的催化劑,沸石助劑,氧化鋁。上海恒業(yè)將以真誠的服務、創(chuàng)新的理念、***的產(chǎn)品,為彼此贏得全新的未來!