本文將對AGV底盤結構進行深入分析。單舵輪驅動結構[適合1T以上負載、牽引車、叉車類應用場景],單舵輪驅動結構是較簡單的結構之一,其結構由1個舵輪和2個定向輪組成,在叉車上面有著非常普遍的應用。這種結構可以直接適應各種地面,保證驅動舵輪一定著地。根據車重心分布的不同,舵輪是大概會承擔50%的自重,所以牽引力非常強。 但其缺點也顯而易見,單輪驅動的AGV在行駛過程中容易發(fā)生偏移,并且轉彎時需要采用一定的技巧進行控制。機器人底盤的運動控制算法可以實現精確的定位和路徑規(guī)劃。履帶式服務機底盤好不好
不同移動機器人有著不同的構型,不同構型會帶來性能上的差異,性能上的差異決定了其應用的場景。本文主要從本體構型及輪子等方面對常見移動機器人底盤結構進行介紹分析。單舵輪,單舵輪結構是較簡單的底盤結構之一,其底盤結構由1個舵輪、 2個定向輪組成,在叉車上面有著非常普遍的應用。單舵輪底盤結構可以直接適應各種地面,保證驅動舵輪一定著地。結構簡單、成本低,由于是單輪驅動,無需考慮電機配合問題,適用于普遍的環(huán)境和場合。履帶式服務機底盤好不好輪式機器人底盤運行速度更快,運動噪聲更低。
雙舵輪底盤常見的2種結構形式有:1)舵輪居中布置:舵輪布置在車體中心線上,前后對稱布置,直線行走時,前后舵輪調整同樣的角度實現路徑偏移調整,自轉時,左右舵輪轉動90度,變成差速式,可實現自轉。 2)舵輪對角布置:舵輪中心對稱布置,運動形式相較中心線布置時調整較為復雜。兩輪差速驅動結構【適合500KG~1.5T負載的AGV,可以原地旋轉,不能平移】,兩輪差分驅動底盤可以分2種:3輪結構、6輪結構。 ①3輪結構:2個驅動輪、1個萬向輪。在服務機器人上應用較多。但其缺點是:原地旋轉時,占用空間較大。因為是3輪結構,所以輪與車架采用剛性連接就可以。②6輪結構:2個驅動輪在中間、4個萬向輪在車的4個拐角。6輪結構,必須做特殊浮動處理,才可以保證2個驅動輪始終受力著地。
AGV底盤技術的主要包括以下幾個方面:1、避障系統: AGV底盤通常配備有多種傳感器和避障裝置,用于檢測周圍環(huán)境和障礙物,以確保機器人在移動過程中能夠及時避讓。2、控制系統: AGV底盤的控制系統通常包括了控制器、傳感器、導航算法等,用于實現對機器人的運動控制、導航和路徑規(guī)劃等功能。3、機械結構: AGV底盤的機械結構包括底盤框架、懸掛系統、輪子等,這些部件需要具備穩(wěn)固性和適應不同地面的特性,以確保機器人在各種環(huán)境中能夠穩(wěn)定運行。機器人底盤的故障診斷功能能夠及時發(fā)現并解決問題,提高了運行效率。
麥克納姆輪驅動結構【適合運行頻率較低、同時要求任意方向(固定)平移和旋轉的場合】,麥克納姆輪底盤由4個麥克納姆輪組成,麥克納姆輪的滾軸傾斜角必須按照下圖布置。該底盤的優(yōu)點是:可以任意方向平移或旋轉,是運動靈活度較好的底盤。運動學要求4個輪子必須同時著地,這樣才可以達到理想的運動控制。4個輪子如果剛性與底盤連接,根據3點確定1個平面的原理可以知道,其中1個輪子必然懸空或受力很小。為了解決該問題,有如下2種建議方式:1)將前面或后面2個輪子使用彈簧做成上下浮動結構。2)將前面或后面2個輪子做成一組浮動橋臂。所謂的平衡橋臂就是1根桿上面左右固定2個輪子,中間做一個鉸接軸和車架固定。使2個輪子合并為1個受力點。從而使4個麥克納姆輪都可以同等受力。總的來說,AGV底盤的結構設計應根據自身的使用環(huán)境、載重和行駛速度來進行選擇。在選擇時,需要注意的是結構的穩(wěn)定性、驅動能力、轉彎半徑等因素,同時要考慮生產成本和維護成本的平衡。機器人底盤的懸掛系統可以減震和保護機器人的其他部件。鎮(zhèn)江服務機底盤廠家現貨
機器人底盤的設計考慮了人機工程學,操作簡單方便,降低了使用門檻。履帶式服務機底盤好不好
同時開放軟硬件接口,支持多平臺操作,方便用戶快速切換 ,完全開放的用戶接口,包括以太網、控制接口,電源等擴展接口,支持Windows/Linux/Android/IOS開發(fā)環(huán)境互換,90%的接口定義均相同,可方便用戶快速切換。了解完機器人的底盤結構,我們再來看看機器人底盤的應用場景,作為一款中小型機器人底盤,思嵐Apollo的設計可滿足商場、寫字樓、酒店、航站樓等多場景應用,基于完整可靠的底層應用,自定義開發(fā)上層應用。在技術和生產的研發(fā)上可節(jié)省大量時間、精力和成本。履帶式服務機底盤好不好