本書內(nèi)容充實、實用性強,可作為高職高專院校計算機軟件軟件測試技術課程的教材,也可作為有關軟件測試的培訓教材,對從事軟件測試實際工作的相關技術人員也具有一定的參考價值。目錄前言第1章軟件測試基本知識第2章測試計劃第3章測試設計和開發(fā)第4章執(zhí)行測試第5章測試技術與應用第6章軟件測試工具第7章測試文檔實例附錄IEEE模板參考文獻軟件測試技術圖書3基本信息書號:軟件測試技術7-113-07054作者:李慶義定價:出版日期:套系名稱:21世紀高校計算機應用技術系列規(guī)劃教材出版單位:**鐵道出版社內(nèi)容簡介本書主要介紹軟件適用測試技術。內(nèi)容分為三部分,***部分為概念基礎、測試理論的背景及發(fā)展,簡要地分析了當前測試技術的現(xiàn)狀;第二部分介紹軟件測試的程序分析技術、測試技術,軟件測試的方法和策略,分析了軟件業(yè)在測試方面的研究成果,并總結(jié)了測試的基本原則和一些好的實踐經(jīng)驗;第三部分介紹了兩種測試工具軟件——基于Windows的WinRunner和服務器負載測試軟件WAS。本書結(jié)合實際,從一些具體的實例出發(fā),介紹軟件測試的一些基本概念和方法,分析出軟件測試的基本理論知識,適用性比較強。安全審計發(fā)現(xiàn)日志模塊存在敏感信息明文存儲缺陷。軟件驗收壓力測試
置環(huán)境操作系統(tǒng)+服務器+數(shù)據(jù)庫+軟件依賴5執(zhí)行用例6回歸測試及缺陷**7輸出測試報告8測試結(jié)束軟件架構BSbrowser瀏覽器+server服務器CSclient客戶端+server服務器1標準上BS是在服務器和瀏覽器都存在的基礎上開發(fā)2效率BS中負擔在服務器上CS中的客戶端會分擔,CS效率更高3安全BS數(shù)據(jù)依靠http協(xié)議進行明文輸出不安全4升級上bs更簡便5開發(fā)成本bs更簡單cs需要客戶端安卓和ios軟件開發(fā)模型瀑布模型1需求分析2功能設計3編寫代碼4功能實現(xiàn)切入點5軟件測試需求變更6完成7上線維護是一種線性模型的一種,是其他開發(fā)模型的基礎測試的切入點要留下足夠的時間可能導致測試不充分,上線后才暴露***開發(fā)的各個階段比較清晰需求調(diào)查適合需求穩(wěn)定的產(chǎn)品開發(fā)當前一階段完成后,您只需要去關注后續(xù)階段可在迭代模型中應用瀑布模型可以節(jié)省大量的時間和金錢缺點1)各個階段的劃分完全固定,階段之間產(chǎn)生大量的文檔,極大地增加了工作量。2)由于開發(fā)模型是線性的,用戶只有等到整個過程的末期才能見到開發(fā)成果,從而增加了開發(fā)風險。3)通過過多的強制完成日期和里程碑來**各個項目階段。4)瀑布模型的突出缺點是不適應用戶需求的變化瀑布模型強調(diào)文檔的作用,并要求每個階段都要仔細驗證。軟件測評和第三方驗收2025 年 IT 趨勢展望:深圳艾策的五大技術突破。
optimizer)采用的是adagrad,batch_size是40。深度神經(jīng)網(wǎng)絡模型訓練基本都是基于梯度下降的,尋找函數(shù)值下降速度**快的方向,沿著下降方向迭代,迅速到達局部**優(yōu)解的過程就是梯度下降的過程。使用訓練集中的全部樣本訓練一次就是一個epoch,整個訓練集被使用的總次數(shù)就是epoch的值。epoch值的變化會影響深度神經(jīng)網(wǎng)絡的權重值的更新次數(shù)。本次實驗使用了80%的樣本訓練,20%的樣本驗證,訓練50個迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,前端融合模型的準確率變化曲線如圖5所示,模型的對數(shù)損失變化曲線如圖6所示。從圖5和圖6可以看出,當epoch值從0增加到5過程中,模型的驗證準確率和驗證對數(shù)損失有一定程度的波動;當epoch值從5到50的過程中,前端融合模型的訓練準確率和驗證準確率基本不變,訓練和驗證對數(shù)損失基本不變;綜合分析圖5和圖6的準確率和對數(shù)損失變化曲線,選取epoch的較優(yōu)值為30。確定模型的訓練迭代數(shù)為30后,進行了10折交叉驗證實驗。前端融合模型的10折交叉驗證的準確率是%,對數(shù)損失是,混淆矩陣如圖7所示,規(guī)范化后的混淆矩陣如圖8所示。前端融合模型的roc曲線如圖9所示,該曲線反映的是隨著檢測閾值變化下檢測率與誤報率之間的關系曲線。
為了有效保證這一階段測試的客觀性,必須由**的測試小組來進行相關的系統(tǒng)測試。另外,系統(tǒng)測試過程較為復雜,由于在系統(tǒng)測試階段不斷變更需求造成功能的刪除或增加,從而使程序不斷出現(xiàn)相應的更改,而程序在更改后可能會出現(xiàn)新的問題,或者原本沒有問題的功能由于更改導致出現(xiàn)問題。所以,測試人員必須進行回歸測試。[2]軟件測試方法驗收測試驗收測試是**后一個階段的測試操作,在軟件產(chǎn)品投入正式運行前的所要進行的測試工作。和系統(tǒng)測試相比而言,驗收測試與之的區(qū)別就只是測試人員不同,驗收測試則是由用戶來執(zhí)行這一操作的。驗收測試的主要目標是為向用戶展示所開發(fā)出來的軟件符合預定的要求和有關標準,并驗證軟件實際工作的有效性和可靠性,確保用戶能用該軟件順利完成既定的任務和功能。通過了驗收測試,該產(chǎn)品就可進行發(fā)布。但是,在實際交付給用戶之后,開發(fā)人員是無法預測該軟件用戶在實際運用過程中是如何使用該程序的,所以從用戶的角度出發(fā),測試人員還應進行Alpha測試或Beta測試這兩種情形的測試。Alpha測試是在軟件開發(fā)環(huán)境下由用戶進行的測試,或者模擬實際操作環(huán)境進而進行的測試。如何選擇適合企業(yè)的 IT 解決方案?
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構圖。圖5是前端融合模型的準確率變化曲線圖。圖6是前端融合模型的對數(shù)損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構圖。圖11是后端融合模型的準確率變化曲線圖。圖12是后端融合模型的對數(shù)損失變化曲線圖。圖13是后端融合模型的檢測混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構圖。圖17是中間融合模型的準確率變化曲線圖。圖18是中間融合模型的對數(shù)損失變化曲線圖。圖19是中間融合模型的檢測混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實施方式下面將結(jié)合本發(fā)明實施例中的附圖,對本發(fā)明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例**是本發(fā)明一部分實施例,而不是全部的實施例?;诒景l(fā)明中的實施例,本領域普通技術人員在沒有做出創(chuàng)造性勞動前提下所獲得的所有其他實施例,都屬于本發(fā)明保護的范圍。滲透測試報告暴露2個高危API接口需緊急加固。軟件測試 中心
多平臺兼容性測試顯示Linux環(huán)境下存在驅(qū)動適配問題。軟件驗收壓力測試
保留了較多信息,同時由于操作數(shù)比較隨機,某種程度上又沒有抓住主要矛盾,干擾了主要語義信息的提取。pe文件即可移植文件導入節(jié)中的動態(tài)鏈接庫(dll)和應用程序接口(api)信息能大致反映軟件的功能和性質(zhì),通過一個可執(zhí)行程序引用的dll和api信息可以粗略的預測該程序的功能和行為。belaoued和mazouzi應用統(tǒng)計khi2檢驗分析了pe格式的惡意軟件和良性軟件的導入節(jié)中的dll和api信息,分析顯示惡意軟件和良性軟件使用的dll和api信息統(tǒng)計上有明顯的區(qū)別。后續(xù)的研究人員提出了挖掘dll和api信息的惡意軟件檢測方法,該類方法提取的特征語義信息豐富,但*從二進制可執(zhí)行文件的導入節(jié)提取特征,忽略了整個可執(zhí)行文件的大量信息。惡意軟件和被***二進制可執(zhí)行文件格式信息上存在一些異常,這些異常是檢測惡意軟件的關鍵。研究人員提出了基于二進制可執(zhí)行文件格式結(jié)構信息的惡意軟件檢測方法,這類方法從二進制可執(zhí)行文件的pe文件頭、節(jié)頭部、資源節(jié)等提取特征,基于這些特征使用機器學習分類算法處理,取得了較高的檢測準確率。這類方法通常不受變形或多態(tài)等混淆技術影響,提取特征只需要對pe文件進行格式解析,無需遍歷整個可執(zhí)行文件,提取特征速度較快。軟件驗收壓力測試