每一種信息的來源或者形式,都可以稱為一種模態(tài)。例如,人有觸覺,聽覺,視覺,嗅覺。多模態(tài)機器學習旨在通過機器學習的方法實現(xiàn)處理和理解多源模態(tài)信息的能力。多模態(tài)學習從1970年代起步,經(jīng)歷了幾個發(fā)展階段,在2010年后***步入深度學習(deeplearning)階段。在某種意義上,深度學習可以被看作是允許我們“混合和匹配”不同模型以創(chuàng)建復雜的深度多模態(tài)模型。目前,多模態(tài)數(shù)據(jù)融合主要有三種融合方式:前端融合(early-fusion)即數(shù)據(jù)水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個**的數(shù)據(jù)集融合成一個單一的特征向量空間,然后將其用作機器學習算法的輸入,訓練機器學習模型,如圖1所示。由于多模態(tài)數(shù)據(jù)的前端融合往往無法充分利用多個模態(tài)數(shù)據(jù)間的互補性,且前端融合的原始數(shù)據(jù)通常包含大量的冗余信息。因此,多模態(tài)前端融合方法常常與特征提取方法相結(jié)合以剔除冗余信息,基于領(lǐng)域經(jīng)驗從每個模態(tài)中提取更高等別的特征表示,或者應(yīng)用深度學習算法直接學習特征表示,然后在特性級別上進行融合。后端融合則是將不同模態(tài)數(shù)據(jù)分別訓練好的分類器輸出決策進行融合,如圖2所示。2025 年 IT 趨勢展望:深圳艾策的五大技術(shù)突破。系統(tǒng)安全測評
并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓練得到的多模態(tài)深度集成模型中,對測試樣本進行檢測并得出檢測結(jié)果。實驗結(jié)果與分析(1)樣本數(shù)據(jù)集選取實驗評估使用了不同時期的惡意軟件和良性軟件樣本,包含了7871個良性軟件樣本和8269個惡意軟件樣本,其中4103個惡意軟件樣本是2011年以前發(fā)現(xiàn)的,4166個惡意軟件樣本是近年來新發(fā)現(xiàn)的;3918個良性軟件樣本是從全新安裝的windowsxpsp3系統(tǒng)中收集的,3953個良性軟件樣本是從全新安裝的32位windows7系統(tǒng)中收集的。所有的惡意軟件樣本都是從vxheavens網(wǎng)站中收集的,所有的樣本格式都是windowspe格式的,樣本數(shù)據(jù)集構(gòu)成如表1所示。表1樣本數(shù)據(jù)集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計82697871(2)評價指標及方法分類性能主要用兩個指標來評估:準確率和對數(shù)損失。準確率測量所有預測中正確預測的樣本占總樣本的比例,*憑準確率通常不足以評估預測的魯棒性,因此還需要使用對數(shù)損失。對數(shù)損失(logarithmicloss),也稱交叉熵損失(cross-entropyloss),是在概率估計上定義的,用于測量預測類別與真實類別之間的差距大小。CNAS軟件系統(tǒng)測評怎么做性能基準測試GPU利用率未達理論最大值67%。
先將當前軟件樣本件的二進制可執(zhí)行文件轉(zhuǎn)換為十六進制字節(jié)碼序列,然后采用n-grams方法在十六進制字節(jié)碼序列中滑動,產(chǎn)生大量的連續(xù)部分重疊的短序列特征,提取得到當前軟件樣本的二進制可執(zhí)行文件的字節(jié)碼n-grams的特征表示。生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計所有類別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個dll和api信息;然后判斷當前的軟件樣本的導入節(jié)里是否存在選擇出的某個引用頻率**高的dll和api信息,如存在,則將當前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對當前軟件樣本的所有dll和api信息進行表示形成當前軟件樣本的dll和api信息特征視圖。生成軟件樣本的格式信息特征視圖,是從當前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,形成當前軟件樣本的格式信息特征視圖。從當前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,是從當前軟件樣本的pe格式結(jié)構(gòu)信息中確定存在特定格式異常的pe格式結(jié)構(gòu)特征以及存在明顯的統(tǒng)計差異的格式結(jié)構(gòu)特征。特定格式異常包括:(1)代碼從**后一節(jié)開始執(zhí)行,(2)節(jié)頭部可疑的屬性,。
特征之間存在部分重疊,但特征類型間存在著互補,融合這些不同抽象層次的特征可更好的識別軟件的真正性質(zhì)。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測,但惡意軟件很難同時偽造多個抽象層次的特征逃避檢測?;谠撚^點,本發(fā)明實施例提出一種基于多模態(tài)深度學習的惡意軟件檢測方法,以實現(xiàn)對惡意軟件的有效檢測,提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態(tài)的特征,有效提高惡意軟件檢測的準確率和魯棒性,具體步驟如下:步驟s1、提取軟件樣本的二進制可執(zhí)行文件的dll和api信息、pe格式結(jié)構(gòu)信息以及字節(jié)碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖;統(tǒng)計當前軟件樣本的導入節(jié)中引用的dll和api,提取得到當前軟件樣本的二進制可執(zhí)行文件的dll和api信息的特征表示。對當前軟件樣本的二進制可執(zhí)行文件進行格式結(jié)構(gòu)解析,并按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息,得到該軟件樣本的二進制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示。艾策醫(yī)療檢測中心為體外診斷試劑提供全流程合規(guī)性驗證服務(wù)。
本發(fā)明屬于惡意軟件防護技術(shù)領(lǐng)域::,涉及一種基于多模態(tài)深度學習的惡意軟件檢測方法。背景技術(shù):::惡意軟件是指在未明確提示用戶或未經(jīng)用戶許可的情況下,故意編制或設(shè)置的,對網(wǎng)絡(luò)或系統(tǒng)會產(chǎn)生威脅或潛在威脅的計算機軟件。常見的惡意軟件有計算機**(簡稱**)、特洛伊木馬(簡稱木馬)、計算機蠕蟲(簡稱蠕蟲)、后門、邏輯**等。惡意軟件可能在用戶不知情的情況下竊取計算機用戶的信息和隱私,也可能非法獲得計算機系統(tǒng)和網(wǎng)絡(luò)資源的控制,破壞計算機和網(wǎng)絡(luò)的可信性、完整性和可用性,從而為惡意軟件控制者謀取非法利益。騰訊安全發(fā)布的《2017年度互聯(lián)網(wǎng)安全報告》顯示,2017年騰訊電腦管家pc端總計攔截**近30億次,平均每月攔截木馬**近,共發(fā)現(xiàn)**或木馬***。這些數(shù)目龐大、名目繁多的惡意軟件侵蝕著我國的***、經(jīng)濟、文化、***等各個領(lǐng)域的信息安全,帶來了前所未有的挑戰(zhàn)。當前的反**軟件主要采用基于特征碼的檢測方法,這種方法通過對代碼進行充分研究,獲得惡意軟件特征值(即每種惡意軟件所獨有的十六進制代碼串),如字節(jié)序列、特定的字符串等,通過匹配查找軟件中是否包含惡意軟件特征庫中的特征碼來判斷其是否為惡意軟件。艾策檢測團隊采用多模態(tài)傳感器融合技術(shù),構(gòu)建智能工廠設(shè)備狀態(tài)健康監(jiān)測體系。軟件驗收安全檢測費用
云計算與 AI 融合:深圳艾策的創(chuàng)新解決方案。系統(tǒng)安全測評
幫助客戶提升內(nèi)部技術(shù)團隊能力。例如,某三甲醫(yī)院在采用艾策科技的醫(yī)療信息化系統(tǒng)檢測方案后,不僅系統(tǒng)漏洞率下降45%,其IT團隊的安全意識與應(yīng)急響應(yīng)能力也提升。技術(shù)創(chuàng)新未來方向艾策科技創(chuàng)始人兼CTO表示:“作為軟件檢測公司,我們始終將技術(shù)創(chuàng)新視為競爭力。未來,公司將重點投入AI算法優(yōu)化、邊緣計算檢測等前沿領(lǐng)域,為電力能源、政企單位等行業(yè)提供更高效、更智能的質(zhì)量保障服務(wù)?!鄙钲诎咝畔⒖萍加邢薰臼且患伊⒆阌诨浉郯拇鬄硡^(qū),依托信息技術(shù)產(chǎn)業(yè),面向全國客戶提供專業(yè)、可靠服務(wù)的第三方CMACNAS檢測機構(gòu)。在檢測服務(wù)過程中,公司始終堅持以客戶需求為本,秉承公平公正的第三方檢測要求,遵循國家檢測標準規(guī)范,確保檢測數(shù)據(jù)和結(jié)果準確可靠,運用前沿A人工智能技術(shù)提高檢測效率。我們追求創(chuàng)造優(yōu)異的社會價值,我們致力于打造公司成為第三方檢測行業(yè)的行業(yè)榜樣。系統(tǒng)安全測評