滲透測試一個(gè)系統(tǒng)報(bào)價(jià)

來源: 發(fā)布時(shí)間:2025-05-01

    坐標(biāo)點(diǎn)(0,1)**一個(gè)完美的分類器,它將所有的樣本都正確分類。roc曲線越接近左上角,該分類器的性能越好。從圖9可以看出,該方案的roc曲線非常接近左上角,性能較優(yōu)。另外,前端融合模型的auc值為。(5)后端融合后端融合的架構(gòu)如圖10所示,后端融合方式用三種模態(tài)的特征分別訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,然后進(jìn)行決策融合,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,后端融合模型的準(zhǔn)確率變化曲線如圖11所示,模型的對數(shù)損失變化曲線如圖12所示。從圖11和圖12可以看出,當(dāng)epoch值從0增加到5過程中,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,模型的訓(xùn)練對數(shù)損失和驗(yàn)證對數(shù)損失快速減少;當(dāng)epoch值從5到50的過程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率小幅提高,訓(xùn)練對數(shù)損失和驗(yàn)證對數(shù)損失緩慢下降;綜合分析圖11和圖12的準(zhǔn)確率和對數(shù)損失變化曲線,選取epoch的較優(yōu)值為40。確定模型的訓(xùn)練迭代數(shù)為40后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。艾策檢測針對智能穿戴設(shè)備開發(fā)動(dòng)態(tài)壓力測試系統(tǒng),確保人機(jī)交互的舒適性與安全性。滲透測試一個(gè)系統(tǒng)報(bào)價(jià)

滲透測試一個(gè)系統(tǒng)報(bào)價(jià),測評

    步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓(xùn)練樣本,基于多模態(tài)數(shù)據(jù)融合方法,將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;步驟s3、將軟件樣本中的類別未知的軟件樣本作為測試樣本,并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對測試樣本進(jìn)行檢測并得出檢測結(jié)果。進(jìn)一步的,所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息的特征表示,是統(tǒng)計(jì)當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api;所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示,是先對當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件進(jìn)行格式結(jié)構(gòu)解析,然后按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息;所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的字節(jié)碼n-grams的特征表示,是先將當(dāng)前軟件樣本件的二進(jìn)制可執(zhí)行文件轉(zhuǎn)換為十六進(jìn)制字節(jié)碼序列,然后采用n-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng),產(chǎn)生大量的連續(xù)部分重疊的短序列特征。進(jìn)一步的,采用3-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng)產(chǎn)生連續(xù)部分重疊的短序列特征。進(jìn)一步的。東莞辦理軟件檢測報(bào)告性能基準(zhǔn)測試GPU利用率未達(dá)理論最大值67%。

滲透測試一個(gè)系統(tǒng)報(bào)價(jià),測評

    測試人員素質(zhì)要求1、責(zé)任心2、學(xué)習(xí)能力3、懷疑精神4、溝通能力5、專注力6、洞察力7、團(tuán)隊(duì)精神8、注重積累軟件測試技術(shù)測試目的編輯軟件測試的目的是為了保證軟件產(chǎn)品的**終質(zhì)量,在軟件開發(fā)的過程中,對軟件產(chǎn)品進(jìn)行質(zhì)量控制。一般來說軟件測試應(yīng)由**的產(chǎn)品評測中心負(fù)責(zé),嚴(yán)格按照軟件測試流程,制定測試計(jì)劃、測試方案、測試規(guī)范,實(shí)施測試,對測試記錄進(jìn)行分析,并根據(jù)回歸測試情況撰寫測試報(bào)告。測試是為了證明程序有錯(cuò),而不能保證程序沒有錯(cuò)誤。軟件測試技術(shù)常見測試編輯回歸測試功能測試壓力測試負(fù)載測試性能測試易用性測試安裝與反安裝測試**測試安全性測試兼容性測試內(nèi)存泄漏測試比較測試Alpha測試Beta測試測試信息流1、軟件配置2、測試配置3、測試工具軟件測試技術(shù)-軟件測試的分類1、從是否需要執(zhí)行被測試軟件的角度分類(靜態(tài)測試和動(dòng)態(tài)測試)。2、從測試是否針對軟件結(jié)構(gòu)與算法的角度分類(白盒測試和黑盒測試)。3、從測試的不同階段分類(單元測試、集成測試、系統(tǒng)測試、驗(yàn)收測試)。

    后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是128,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且3個(gè)隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,其第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且2個(gè)隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是512,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是384,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是256,第四個(gè)隱含層的神經(jīng)元個(gè)數(shù)是125。云計(jì)算與 AI 融合:深圳艾策的創(chuàng)新解決方案。

滲透測試一個(gè)系統(tǒng)報(bào)價(jià),測評

    [3]軟件測試方法原則編輯1.盡早不斷測試的原則應(yīng)當(dāng)盡早不斷地進(jìn)行軟件測試。據(jù)統(tǒng)計(jì)約60%的錯(cuò)誤來自設(shè)計(jì)以前,并且修正一個(gè)軟件錯(cuò)誤所需的費(fèi)用將隨著軟件生存周期的進(jìn)展而上升。錯(cuò)誤發(fā)現(xiàn)得越早,修正它所需的費(fèi)用就越少。[4]測試用例由測試輸入數(shù)據(jù)和與之對應(yīng)的預(yù)期輸出結(jié)果這兩部分組成。[4]3.**測試原則(1)**測試原則。這是指軟件測試工作由在經(jīng)濟(jì)上和管理上**于開發(fā)機(jī)構(gòu)的**進(jìn)行。程序員應(yīng)避免檢査自己的程序,程序設(shè)計(jì)機(jī)構(gòu)也不應(yīng)測試自己開發(fā)的程序。軟件開發(fā)者難以客觀、有效地測試自己的軟件,而找出那些因?yàn)閷π枨蟮恼`解而產(chǎn)生的錯(cuò)誤就更加困難。[4](2)合法和非合法原則。在設(shè)計(jì)時(shí),測試用例應(yīng)當(dāng)包括合法的輸入條件和不合法的輸入條件。[4](3)錯(cuò)誤群集原則。軟件錯(cuò)誤呈現(xiàn)群集現(xiàn)象。經(jīng)驗(yàn)表明,某程序段剩余的錯(cuò)誤數(shù)目與該程序段中已發(fā)現(xiàn)的錯(cuò)誤數(shù)目成正比,所以應(yīng)該對錯(cuò)誤群集的程序段進(jìn)行重點(diǎn)測試。[4](4)嚴(yán)格性原則。嚴(yán)格執(zhí)行測試計(jì)劃,排除測試的隨意性。[4](5)覆蓋原則。應(yīng)當(dāng)對每一個(gè)測試結(jié)果做***的檢查。[4](6)定義功能測試原則。檢查程序是否做了要做的事*是成功的一半,另一半是看程序是否做了不屬于它做的事。[4](7)回歸測試原則。應(yīng)妥善保留測試用例。代碼審計(jì)發(fā)現(xiàn)2處潛在內(nèi)存泄漏風(fēng)險(xiǎn),建議版本迭代修復(fù)。第三方軟件測試公司排名

用戶體驗(yàn)測評中界面交互評分低于同類產(chǎn)品均值15.6%。滲透測試一個(gè)系統(tǒng)報(bào)價(jià)

    特征之間存在部分重疊,但特征類型間存在著互補(bǔ),融合這些不同抽象層次的特征可更好的識別軟件的真正性質(zhì)。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測,但惡意軟件很難同時(shí)偽造多個(gè)抽象層次的特征逃避檢測?;谠撚^點(diǎn),本發(fā)明實(shí)施例提出一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法,以實(shí)現(xiàn)對惡意軟件的有效檢測,提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態(tài)的特征,有效提高惡意軟件檢測的準(zhǔn)確率和魯棒性,具體步驟如下:步驟s1、提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息、pe格式結(jié)構(gòu)信息以及字節(jié)碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖;統(tǒng)計(jì)當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api,提取得到當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息的特征表示。對當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件進(jìn)行格式結(jié)構(gòu)解析,并按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息,得到該軟件樣本的二進(jìn)制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示。滲透測試一個(gè)系統(tǒng)報(bào)價(jià)

標(biāo)簽: 測評