思秉自動(dòng)化伸縮式輸送機(jī):靈活高效,重塑物流新未來
思秉自動(dòng)化爬坡式輸送機(jī):讓物流坡度不再是難題!
思秉自動(dòng)化:革新工業(yè)傳輸,皮帶輸送機(jī)帶領(lǐng)高效生產(chǎn)新時(shí)代
革新物流運(yùn)輸方式,思秉自動(dòng)化180度皮帶輸送機(jī)助力多個(gè)行業(yè)發(fā)
思秉自動(dòng)化智能輸送機(jī):解鎖物流新紀(jì)元,效率與智慧并驅(qū)的典范
智能碼垛機(jī)械手:助力物流行業(yè)邁入智能時(shí)代
智能碼垛機(jī)械手:助力物流行業(yè)邁入智能時(shí)代
思秉自動(dòng)化伸縮輸送機(jī):重塑圖書物流效率的革新性解決方案
思秉自動(dòng)化提升式輸送機(jī):重塑物流效率新航標(biāo)
思秉自動(dòng)化涂裝生產(chǎn)線:領(lǐng)航工業(yè)涂裝新紀(jì)元,精確高效點(diǎn)亮智能制
杭州音視貝科技公司研發(fā)的大模型知識(shí)庫系統(tǒng)產(chǎn)品,主要有以下幾個(gè)方面的功能:
1、知識(shí)標(biāo)簽:從業(yè)務(wù)和管理的角度對(duì)知識(shí)進(jìn)行標(biāo)注,文檔在采集過程中會(huì)自動(dòng)生成該文檔的基本屬性,例如:分類、編號(hào)、名稱、日期等,支持自定義;
2、知識(shí)檢索:支持通過關(guān)鍵字對(duì)文檔標(biāo)題或內(nèi)容進(jìn)行檢索;
3、知識(shí)推送:將更新的知識(shí)庫內(nèi)容主動(dòng)推送給相關(guān)人員;
4、知識(shí)回答:支持在線提問可先在知識(shí)庫中進(jìn)行匹配,匹配失敗或不滿意時(shí)可通過提示,轉(zhuǎn)接至互聯(lián)網(wǎng)中進(jìn)行二次匹配;
5、知識(shí)權(quán)限:支持根據(jù)不同的崗位設(shè)置不同的知識(shí)提取權(quán)限,管理員可進(jìn)行相關(guān)知識(shí)庫的維護(hù)和更新。 數(shù)據(jù)顯示,2022中國智能客服市場規(guī)模達(dá)到66.8億元,預(yù)計(jì)到2027年市場規(guī)模有望增長至181.3億元。山東中小企業(yè)大模型國內(nèi)項(xiàng)目有哪些
杭州音視貝科技公司研發(fā)的大模型知識(shí)庫系統(tǒng)產(chǎn)品,為中小企業(yè)多效管控提供業(yè)務(wù)支持,該系統(tǒng)能夠更準(zhǔn)確的理解用戶題圖,后臺(tái)配置操作簡單、便捷,讓用戶花更少的錢,享受更好的服務(wù)具體解決方案如下:
1、支持私有化部署,解決企業(yè)信息外泄風(fēng)險(xiǎn);
2、支持多種格式上傳,如文字、圖片、音頻、視頻等;
3、支持中英文雙語版本,提供在線翻譯;
4、支持管理權(quán)限設(shè)置,系統(tǒng)自動(dòng)識(shí)別用戶身份;
5、支持多種部署方式,公有云、私有云、混合云等; 山東中小企業(yè)大模型國內(nèi)項(xiàng)目有哪些國內(nèi)的一些投資人和創(chuàng)業(yè)者,在經(jīng)過幾個(gè)月的折騰后,發(fā)現(xiàn)還是要尋找盈利模式,業(yè)務(wù)應(yīng)用場景和商業(yè)化的能力。
知識(shí)圖譜是一種用于組織、表示和推理知識(shí)的圖形結(jié)構(gòu)。它是一種將實(shí)體、屬性和它們之間的關(guān)系表示為節(jié)點(diǎn)和邊的方式,以展示實(shí)體之間的關(guān)聯(lián)和語義信息。知識(shí)圖譜旨在模擬人類的知識(shí)組織方式,以便計(jì)算機(jī)能夠理解和推理知識(shí)。知識(shí)圖譜技術(shù)對(duì)于智能客服系統(tǒng)的能力提升主要表現(xiàn)在以下幾個(gè)方面:
一、智能應(yīng)答:知識(shí)圖譜可以與自然語言處理技術(shù)結(jié)合,構(gòu)建智能提問回答系統(tǒng),將不同類型的數(shù)據(jù)關(guān)聯(lián)到一起,形成一個(gè)“智能知識(shí)庫”。當(dāng)客戶提問時(shí),基于知識(shí)圖譜的智能系統(tǒng)可以通過語義匹配和推理,系統(tǒng)可以迅速篩選出匹配答案,比普通的智能客服應(yīng)答更加準(zhǔn)確,減少回答錯(cuò)誤、無法識(shí)別問題等現(xiàn)象的發(fā)生。
二、知識(shí)推薦:知識(shí)圖譜可以幫助整理和管理大量的客戶問題和解決方案,構(gòu)建一個(gè)結(jié)構(gòu)化和語義化的知識(shí)庫??头藛T可以通過查詢知識(shí)圖譜快速獲取相關(guān)的知識(shí),并將其應(yīng)用于解決客戶問題。
三、智能推薦:在電商、營銷領(lǐng)域,知識(shí)圖譜技術(shù)可以對(duì)不同用戶群體的消費(fèi)行為、購物喜好、搜索記錄等要素進(jìn)行分析,并與其他用戶的數(shù)據(jù)進(jìn)行關(guān)聯(lián)分析,然后自動(dòng)推薦相關(guān)的產(chǎn)品或服務(wù)或解決方案,從而增加用戶購買的可能性,使?fàn)I銷效果加倍。
目前市面上有許多出名的AI大模型,其中一些是:
1、GPT-3(GenerativePre-trainedTransformer3):GPT-3是由OpenAI開發(fā)的一款自然語言處理(NLP)模型,擁有1750億個(gè)參數(shù)。它可以生成高質(zhì)量的文本、回答問題、進(jìn)行對(duì)話等。GPT-3可以用于自動(dòng)摘要、語義搜索、語言翻譯等任務(wù)。
2、BERT(BidirectionalEncoderRepresentationsfromTransformers):BERT是由Google開發(fā)的一款基于Transformer結(jié)構(gòu)的預(yù)訓(xùn)練語言模型。BERT擁有1億個(gè)參數(shù)。它在自然語言處理任務(wù)中取得了巨大的成功,包括文本分類、命名實(shí)體識(shí)別、句子關(guān)系判斷等。
3、ResNet(ResidualNetwork):ResNet是由Microsoft開發(fā)的一種深度卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),被用于計(jì)算機(jī)視覺任務(wù)中。ResNet深層網(wǎng)絡(luò)結(jié)構(gòu)解決了梯度消失的問題,使得訓(xùn)練更深的網(wǎng)絡(luò)變得可行。ResNet在圖像分類、目標(biāo)檢測和圖像分割等任務(wù)上取得了***的性能。
4、VGGNet(VisualGeometryGroupNetwork):VGGNet是由牛津大學(xué)的VisualGeometryGroup開發(fā)的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。VGGNet結(jié)構(gòu)簡單清晰,以其較小的卷積核和深層的堆疊吸引了很多關(guān)注。VGGNet在圖像識(shí)別和圖像分類等任務(wù)上表現(xiàn)出色
。5、Transformer:Transformer是一種基于自注意力機(jī)制的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。 大模型可以給機(jī)器人發(fā)命令、理解機(jī)器人的反饋、分解任務(wù)變成動(dòng)作、幫助機(jī)器處理圖像、聲音等多模態(tài)的數(shù)據(jù)。
客服是企業(yè)與客戶之間提供聯(lián)絡(luò)的重要紐帶,在越來越重視用戶體驗(yàn)和評(píng)價(jià)的當(dāng)下,客服質(zhì)量的高低直接影響了企業(yè)未來發(fā)展的命運(yùn)。
在客服行業(yè)發(fā)展的初期,一般為客戶在產(chǎn)品出現(xiàn)問題后撥打商家電話,類似售后服務(wù)之類的。然后出現(xiàn)了IVR菜單導(dǎo)航,用戶根據(jù)語音提示按鍵操作。以上兩種模式一是服務(wù)比較滯后,二是操作復(fù)雜,用戶體驗(yàn)都差。
現(xiàn)在隨著語音識(shí)別技術(shù)的不斷發(fā)展,用戶只要根據(jù)語音提示說出需要辦理的業(yè)務(wù),后臺(tái)通過智能工單系統(tǒng)自動(dòng)分配到對(duì)應(yīng)的客服。但此時(shí)的技術(shù)還不成熟,主要是基于關(guān)鍵詞檢索,所以經(jīng)常會(huì)出現(xiàn)系統(tǒng)被問傻的情況,用戶體驗(yàn)依舊很差。
2022年開始,以ChatGPT為主的大模型將客戶聯(lián)絡(luò)帶入了全新的發(fā)展階段。大模型可以在多輪對(duì)話的基礎(chǔ)上,聯(lián)系上下文,給用戶更準(zhǔn)確的回答。在用戶多次詢問無果的時(shí)候,可以直接轉(zhuǎn)接人工進(jìn)行處理,前期的對(duì)話內(nèi)容也會(huì)進(jìn)行轉(zhuǎn)接,用戶無需再次重復(fù)自己的問題。這種客服對(duì)話流程的無縫銜接,極大地提升了用戶體驗(yàn)和服務(wù)效率。 大模型在自然語言處理、計(jì)算機(jī)視覺、生成模型、語音識(shí)別和對(duì)話系統(tǒng)等領(lǐng)域取得了明顯的發(fā)展。浙江知識(shí)庫系統(tǒng)大模型國內(nèi)項(xiàng)目有哪些
李彥宏在2023中關(guān)村論壇上提出了大模型即將改變世界。山東中小企業(yè)大模型國內(nèi)項(xiàng)目有哪些
大模型與知識(shí)圖譜是兩個(gè)不同的概念,它們在人工智能領(lǐng)域有著不同的應(yīng)用和作用。
大模型是指具有大量參數(shù)和計(jì)算資源的深度學(xué)習(xí)模型,例如GPT-3、BERT等。這些大模型通過對(duì)大規(guī)模數(shù)據(jù)進(jìn)行訓(xùn)練,能夠?qū)W習(xí)并捕捉到豐富的語義和語法規(guī)律,并在各種自然語言處理任務(wù)中表現(xiàn)出色。
知識(shí)圖譜則是一種結(jié)構(gòu)化的知識(shí)表示方法,它將現(xiàn)實(shí)世界中的事物和其之間的關(guān)系以圖的形式進(jìn)行建模。知識(shí)圖譜通常包含實(shí)體、屬性和關(guān)系,可以用于存儲(chǔ)和推理各種領(lǐng)域的知識(shí)。知識(shí)圖譜可以通過抽取和融合多個(gè)數(shù)據(jù)源的信息來構(gòu)建,是實(shí)現(xiàn)語義理解和知識(shí)推理的重要工具。
將大模型和知識(shí)圖譜結(jié)合起來可以產(chǎn)生更強(qiáng)大的AI系統(tǒng)。大模型可以通過對(duì)大量文本數(shù)據(jù)的學(xué)習(xí)來理解自然語言,并從中抽取出潛在的語義信息。而知識(shí)圖譜可以為大模型提供結(jié)構(gòu)化的背景知識(shí),幫助模型更好地理解和推理。這種結(jié)合能夠在自然語言處理、智能搜索、回答系統(tǒng)等領(lǐng)域中發(fā)揮重要作用,提升系統(tǒng)的準(zhǔn)確性和效果。
總而言之,大模型和知識(shí)圖譜在不同方面發(fā)揮作用,它們的結(jié)合可以提高AI系統(tǒng)在自然語言理解和推理任務(wù)中的性能。 山東中小企業(yè)大模型國內(nèi)項(xiàng)目有哪些