碳化物強化相鈷基高溫合金中很主要的碳化物是MC,M23C6和M6C在鑄造司太立合金中,M23C6是緩慢冷卻時在晶界和枝晶間析出的。在有些合金中,細小的M23C6能與基體γ形成共晶體。MC碳化物顆粒過大,不能對位錯直接產生顯著的影響,因而對合金的強化效果不明顯,而細小彌散的碳化物則有良好的強化作用。位于晶界上的碳化物(主要是M23C6)能阻止晶界滑移,從而改善持久強度,鈷基高溫合金HA-31(X-40)的顯微組織為彌散的強化相為(CoCrW)6 C型碳化物。司太立合金含鉻量比較高,所以在合金表面能形成抵抗堿金屬硫酸鹽。河北硬質司太立合金定制加工
一般鈷基高溫合金缺少共格的強化相,雖然中溫強度低,但在高于980℃時具有較高的強度、良好的抗熱疲勞、抗熱腐蝕和耐磨蝕性能,且有較好的焊接性。適于制作航空噴氣發(fā)動機、工業(yè)燃氣輪機、艦船燃氣輪機的導向葉片和噴嘴導葉以及柴油機噴嘴等。碳化物強化相。鈷基高溫合金中主要的碳化物是MC﹑M23C6和M6C在鑄造鈷基合金中,M23C6是緩慢冷卻時在晶界和枝晶間析出的。在有些合金中,細小的M23C6能與基體γ形成共晶體。MC碳化物顆粒過大,不能對位錯直接產生顯著的影響,因而對合金的強化效果不明顯,而細小彌散的碳化物則有良好的強化作用。西藏鐵基司太立合金成分標準肯納司太立金屬(上海)有限公司有著完善的服務質量和極高的信用等級。
司太立合金發(fā)展歷程:20世紀30年代末期,由于活塞式航空發(fā)動機用渦輪增壓器的需要,開始研制鈷基高溫合金。1942年﹐美國首先用牙科金屬材料Vitallium(Co-27Cr-5Mo-0.5Ti)制作渦輪增壓器葉片取得成功。在使用過程中這種合金不斷析出碳化物相而變脆。因此﹐把合金的含碳量降至0.3%,同時添加2.6%的鎳,以提高碳化物形成元素在基體中的溶解度,這樣就發(fā)展成為HA-21合金。40年代末,X-40和HA-21制作航空噴氣發(fā)動機和渦輪增壓器鑄造渦輪葉片和導向葉片,其工作溫度可達850-870℃。
司太立合金的耐磨損性能:合金工件的磨損在很大程度上受其表面的接觸應力或沖擊應力的影響。在應力作用下表面磨損隨位錯流動和接觸表面的互相作用特征而定。對于司太立合金來說,這種特征與基體具有較低的層錯能及基體組織在應力作用或溫度影響下由面心立方轉變?yōu)榱矫芘啪w結構有關,具有六方密排晶體結構的金屬材料,耐磨性是較優(yōu)的。此外,合金的第二相如碳化物的含量、形態(tài)和分布對耐磨性也有影響。由于鉻、鎢和鉬的合金碳化物分布于富鈷的基體中以及部分鉻、鎢和鉬原子固溶于基體,使合金得到強化,從而改善耐磨性。在鑄造司太立合金中,碳化物顆粒尺寸與冷卻速度有關,冷卻快則碳化物顆粒比較細。砂型鑄造時合金的硬度較低,碳化物顆粒也較粗大,這種狀態(tài)下,合金的磨料磨損耐磨性明顯優(yōu)于石墨型鑄造(碳化物顆粒較細),而粘著磨損耐磨性兩者沒有明顯差異,說明粗大的碳化物有利于改善抗磨料磨損能力。司太立合金的主要成分是鈷。
司太立合金介紹:高溫合金包括高溫鈷基合金:傳統的高溫合金材料分類可以從基體元素類型、合金強化類型、材料形式三個方面進行。1、按基體元素種類來分:鐵基高溫合金,鐵基高溫合金也可稱為耐熱合金鋼。其基體為鐵,加入少量的鎳、鉻等合金元素,耐熱合金鋼可根據其正常要求分為馬氏體、奧氏體、珠光體、鐵素體耐熱鋼。2、鎳基高溫合金:鎳基高溫合金的鎳含量大于一半,適用于1000℃以上的工況,采用固溶和老化工藝可極大提高鎳基高溫合金的抗蠕變性和抗壓強度。根據對高溫環(huán)境中使用的合金的分析,鎳基合金的使用遠遠超過鐵基和鈷基合金的有用性。司太立合金是通常所說的鈷基合金。新疆司太立合金多少錢
司太立合金中碳化物的熱穩(wěn)定性非常好。河北硬質司太立合金定制加工
我國對Stellite高溫合金的研究比較深入,與其他高溫合金不同的是,司太立高溫合金不是通過與基體牢固結合的有序析出相強化,而是由經過固溶強化的奧氏體面心立方基體和少量分布在基體中的碳化物組成。在硝酸和醋酸溶液中,所有司太立合金在室溫下都具有很強的耐硝酸和醋酸的能力。司太立合金在室溫下變得惰性,類似于不銹鋼。司太立合金在鹽酸溶液中的耐腐蝕性能與奧氏體不銹鋼相似。主流的司太立合金零件采用離心鑄造工藝制造,并通過精煉和澆注中間合金獲得。由于工藝成熟、效率高、重復性好,該工藝在業(yè)界得到普遍應用。河北硬質司太立合金定制加工