離子通道的近代觀念源于Hodgkin、Huxley、Katz等人在20世紀(jì)30—50年代的開(kāi)創(chuàng)性研究。在1902年,Bernstein創(chuàng)造性地將Nernst的理論應(yīng)用到生物膜上,提出了“膜學(xué)說(shuō)”。他認(rèn)為在靜息狀態(tài)下,細(xì)胞膜只對(duì)鉀離子具有通透性;而當(dāng)細(xì)胞興奮的瞬間,膜的破裂使其喪失了選擇通透性,所有的離子都可以自由通過(guò)。Cole等人在1939年進(jìn)行的高頻交變電流測(cè)量實(shí)驗(yàn)表明,當(dāng)動(dòng)作電位被觸發(fā)時(shí),雖然細(xì)胞的膜電導(dǎo)大為增加,但膜電容卻只略有下降,這個(gè)事實(shí)表明膜學(xué)說(shuō)所宣稱(chēng)的膜破裂的觀點(diǎn)是不可靠的。1949年Cole在玻璃微電極技術(shù)的基礎(chǔ)上發(fā)明了電壓鉗位(voltageclamptechnique)技術(shù)...
膜片鉗技術(shù):從一小片膜(約幾平方微米)上獲取電子信息的技術(shù),即保持跨膜電壓恒壓箝位的技術(shù),從而測(cè)量通過(guò)膜的離子電流。通過(guò)研究離子通道中的離子流動(dòng),可以了解離子輸運(yùn)、信號(hào)傳遞等信息?;驹?利用負(fù)反饋電子電路,將前排微電極吸附的細(xì)胞膜電位固定在一定水平,動(dòng)態(tài)或靜態(tài)觀察通過(guò)通道的微小離子電流,從而研究其功能。一種研究離子通道的電生理技術(shù)是施加負(fù)壓,使玻璃微電極前沿(開(kāi)口直徑約1μm)與細(xì)胞膜緊密接觸,形成高阻抗密封,可以準(zhǔn)確記錄離子通道的微小電流。可制備成三種單通道記錄模式:細(xì)胞貼附、內(nèi)面向外、外面向內(nèi),以及另一種多通道全細(xì)胞記錄模式。膜片鉗技術(shù)實(shí)現(xiàn)了小膜的隔離和高阻密封的形成。由于高阻密封,背...
離子選擇性(selectivity)(大小和電荷)∶某一種離子只能通過(guò)與其相應(yīng)的通道跨膜擴(kuò)散(安靜∶K>Na100倍、興奮;Na>K10-20倍);各離子通道在不同狀態(tài)下,對(duì)相應(yīng)離子的通透性不同。門(mén)控特性(Gating)∶失活狀態(tài)不僅是通道處于關(guān)閉狀態(tài),而且只有在經(jīng)過(guò)一個(gè)額外刺激使通道從失活關(guān)閉狀態(tài)進(jìn)入靜息關(guān)閉狀態(tài)后,通道才能再度接受外界刺激而***開(kāi)放。離子通道的功能(FunctionoflonChannels)1.產(chǎn)生細(xì)胞生物電現(xiàn)象,與細(xì)胞興奮性相關(guān)。2.神經(jīng)遞質(zhì)的釋放、腺體的分泌、肌肉的運(yùn)動(dòng)、學(xué)習(xí)和記憶3.維持細(xì)胞正常形態(tài)和功能完整性膜離子通道的基因變異及功能障礙與許多疾病有關(guān),某些先天...
膜片鉗技術(shù)是一種細(xì)胞內(nèi)記錄技術(shù),是研究離子通道活動(dòng)的蕞佳工具,也是應(yīng)用蕞廣的電生理技術(shù)之一。該技術(shù)通過(guò)施加負(fù)壓將微玻管電極(膜片電極或膜片吸管)的前端與細(xì)胞膜緊密接觸,形成GΩ以上的阻抗,使電極開(kāi)口處的細(xì)胞膜與其周?chē)ぴ陔妼W(xué)上絕緣。被孤立的小膜片面積為μm量級(jí),內(nèi)中只有少數(shù)離子通道。玻璃微電極中含有一根浸入電解溶液中的導(dǎo)線,用于傳導(dǎo)離子。在此基礎(chǔ)上對(duì)該膜片施行電壓鉗位(即保持跨膜電壓恒定),如果單個(gè)離子通道被包含在膜片內(nèi),則可對(duì)此膜片上的離子通道的電流進(jìn)行監(jiān)測(cè)記錄。通過(guò)觀測(cè)單個(gè)通道開(kāi)放和關(guān)閉的電流變化,可直接得到各種離子通道開(kāi)放的電流幅值分布、開(kāi)放幾率、開(kāi)放壽命分布等功能參量,并分析它們與膜電...
離子通道結(jié)構(gòu)研究∶目前,絕大多數(shù)離子通道的一級(jí)結(jié)構(gòu)得到了闡明但根本的還是要搞清楚各種離子通道的三維結(jié)構(gòu),在這方面,美國(guó)的二位科學(xué)家彼得阿格雷和羅德里克麥金農(nóng)做出了一些開(kāi)創(chuàng)性的工作,他們到用X光繞射方法得到了K離子通道的三維結(jié)構(gòu),二位因此獲得2003年諾貝系化學(xué)獎(jiǎng)。有關(guān)離子通道結(jié)構(gòu)不是本PPT的重點(diǎn),可參考楊寶峰的和Hill的
這一設(shè)計(jì)模式似乎幾十年都沒(méi)有改變過(guò),作為一個(gè)有著近20年膜片鉗經(jīng)驗(yàn)的科研工作者,記得自己進(jìn)入實(shí)驗(yàn)室次看到的放大器就差不多是這樣,也不覺(jué)得還會(huì)有什么變化。直到筆者在19年訪問(wèn)歐洲的一個(gè)同樣做電生理的實(shí)驗(yàn)室的時(shí)候,發(fā)現(xiàn)了這樣一款獨(dú)特的放大器,讓筆者眼前一亮,這款放大器從前置放大器出來(lái)的線竟然就直接連接在了電腦上,當(dāng)筆者問(wèn)他們放大器和數(shù)模呢?他們說(shuō),你看到的就是全部了,所以的部件都包含在了這個(gè)前置放大器中。滔博生物TOP-Bright專(zhuān)注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專(zhuān)業(yè)團(tuán)隊(duì),7*63小時(shí)隨時(shí)人工在線咨詢(xún).滔博生物膜片鉗實(shí)驗(yàn)外包,數(shù)據(jù)準(zhǔn)確,保結(jié)果...
全細(xì)胞記錄構(gòu)型(whole-cellrecording) 高阻封接形成后,繼續(xù)以負(fù)壓抽吸使電極管內(nèi)細(xì)胞膜破裂,電極胞內(nèi)液直接相通,而與浴槽液絕緣,這種形式稱(chēng)為“全細(xì)胞”記錄。它既可記錄膜電位又可記錄膜電流。其中膜電位可在電流鉗情況下記錄,或?qū)⒉9苓B到標(biāo)準(zhǔn)高阻微電極放大器上記錄。在電壓鉗條件下記錄到的大細(xì)胞全細(xì)胞電流可達(dá)nA級(jí),全細(xì)胞鉗的串聯(lián)電阻(玻管和細(xì)胞內(nèi)部之間的電阻)應(yīng)當(dāng)補(bǔ)償。任何流經(jīng)膜的電流均流經(jīng)這一電阻,所引起的電壓降將使玻管電壓不同于細(xì)胞內(nèi)的真正電位。電流愈大,愈需對(duì)串聯(lián)電阻進(jìn)行補(bǔ)償。全細(xì)胞鉗應(yīng)注意細(xì)胞必需合理的小到其電流能被放大器測(cè)到的范圍(25~50nA)。減少串聯(lián)電阻...
膜片鉗技術(shù)是一種細(xì)胞內(nèi)記錄技術(shù),是研究離子通道活動(dòng)的蕞佳工具,也是應(yīng)用蕞很廣的電生理技術(shù)之一。該技術(shù)通過(guò)施加負(fù)壓將微玻管電極(膜片電極或膜片吸管)的前列與細(xì)胞膜緊密接觸,形成GΩ以上的阻抗,使電極開(kāi)口處的細(xì)胞膜與其周?chē)ぴ陔妼W(xué)上絕緣。被孤立的小膜片面積為μm量級(jí),內(nèi)中只有少數(shù)離子通道。玻璃微電極中含有一根浸入電解溶液中的導(dǎo)線,用于傳導(dǎo)離子。在此基礎(chǔ)上對(duì)該膜片施行電壓鉗位(即保持跨膜電壓恒定),如果單個(gè)離子通道被包含在膜片內(nèi),則可對(duì)此膜片上的離子通道的電流進(jìn)行監(jiān)測(cè)記錄。通過(guò)觀測(cè)單個(gè)通道開(kāi)放和關(guān)閉的電流變化,可直接得到各種離子通道開(kāi)放的電流幅值分布、開(kāi)放幾率、開(kāi)放壽命分布等功能參量,并分析它們與膜...
膜片鉗放大器是整個(gè)實(shí)驗(yàn)系統(tǒng)中的主要,它可用來(lái)作單通道或全細(xì)胞記錄,其工作模式可以是電壓鉗,也可以是電流鉗。從原理來(lái)說(shuō),膜片鉗放大器的探頭電路即I-V變換器有兩種基本結(jié)構(gòu)形式,即電阻反饋式和電容反饋式,前者是一種典型的結(jié)構(gòu),后者因用反饋電容取代了反饋電阻,降低了噪聲,所以特別適合較低噪聲的單通道記錄。由于供膜片鉗實(shí)驗(yàn)的專(zhuān)門(mén)的計(jì)算機(jī)硬件及相應(yīng)的軟件程序的相繼出現(xiàn),使得膜片鉗實(shí)驗(yàn)操作簡(jiǎn)便、效率提高、效率提高滔博生物TOP-Bright專(zhuān)注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專(zhuān)業(yè)團(tuán)隊(duì),7*31小時(shí)隨時(shí)人工在線咨詢(xún).用膜片鉗,輕松掌握細(xì)胞膜離子通道的電生理...
膜片鉗技術(shù)是一種細(xì)胞內(nèi)記錄技術(shù),是研究離子通道活動(dòng)的蕞佳工具,也是應(yīng)用蕞很廣的電生理技術(shù)之一。該技術(shù)通過(guò)施加負(fù)壓將微玻管電極(膜片電極或膜片吸管)的前列與細(xì)胞膜緊密接觸,形成GΩ以上的阻抗,使電極開(kāi)口處的細(xì)胞膜與其周?chē)ぴ陔妼W(xué)上絕緣。被孤立的小膜片面積為μm量級(jí),內(nèi)中只有少數(shù)離子通道。玻璃微電極中含有一根浸入電解溶液中的導(dǎo)線,用于傳導(dǎo)離子。在此基礎(chǔ)上對(duì)該膜片施行電壓鉗位(即保持跨膜電壓恒定),如果單個(gè)離子通道被包含在膜片內(nèi),則可對(duì)此膜片上的離子通道的電流進(jìn)行監(jiān)測(cè)記錄。通過(guò)觀測(cè)單個(gè)通道開(kāi)放和關(guān)閉的電流變化,可直接得到各種離子通道開(kāi)放的電流幅值分布、開(kāi)放幾率、開(kāi)放壽命分布等功能參量,并分析它們與膜...
膜片鉗技術(shù)是一種細(xì)胞內(nèi)記錄技術(shù),是研究離子通道活動(dòng)的蕞佳工具,也是應(yīng)用蕞很廣的電生理技術(shù)之一。該技術(shù)通過(guò)施加負(fù)壓將微玻管電極(膜片電極或膜片吸管)的前列與細(xì)胞膜緊密接觸,形成GΩ以上的阻抗,使電極開(kāi)口處的細(xì)胞膜與其周?chē)ぴ陔妼W(xué)上絕緣。被孤立的小膜片面積為μm量級(jí),內(nèi)中只有少數(shù)離子通道。玻璃微電極中含有一根浸入電解溶液中的導(dǎo)線,用于傳導(dǎo)離子。在此基礎(chǔ)上對(duì)該膜片施行電壓鉗位(即保持跨膜電壓恒定),如果單個(gè)離子通道被包含在膜片內(nèi),則可對(duì)此膜片上的離子通道的電流進(jìn)行監(jiān)測(cè)記錄。通過(guò)觀測(cè)單個(gè)通道開(kāi)放和關(guān)閉的電流變化,可直接得到各種離子通道開(kāi)放的電流幅值分布、開(kāi)放幾率、開(kāi)放壽命分布等功能參量,并分析它們與膜...
ePatch雖然設(shè)備非常小巧,但功能完備,傳統(tǒng)膜片鉗設(shè)備能做的實(shí)驗(yàn),用ePatch幾乎都能做。具有voltage-clamp,current-clamp,zerocurrent-clamp三種模式,自動(dòng)電極電壓飄移補(bǔ)償,C-fast-C-slow-R-series-P/N補(bǔ)償,Bridgebalance補(bǔ)償?shù)裙δ堋?梢宰鋈?xì)胞記錄也可以做單通道記錄,膜片鉗技術(shù)常做的離子通道電流,突觸后電流,動(dòng)作電位檢測(cè)等實(shí)驗(yàn)都能輕松實(shí)現(xiàn)。公司還為此開(kāi)發(fā)了友好的控制和記錄軟件,筆者上手接觸了一下,發(fā)現(xiàn)跟AXON的軟件類(lèi)似,并且程序編輯更為簡(jiǎn)單易用。所記錄到的數(shù)據(jù)可以直接使用Clampfit進(jìn)行分析,可以說(shuō)對(duì)于使...
全細(xì)胞膜片鉗記錄(Whole-cellpatch-clamprecording)是一種早期且使用頻繁的鉗夾技術(shù),相當(dāng)于連續(xù)單電極電壓鉗夾記錄,也就是說(shuō),全細(xì)胞記錄類(lèi)似于傳統(tǒng)的細(xì)胞內(nèi)記錄,但具有更大的優(yōu)勢(shì),如分辨率高、噪聲低、穩(wěn)定性好、細(xì)胞內(nèi)成分可控等。全細(xì)胞記錄技術(shù)測(cè)量一個(gè)細(xì)胞內(nèi)所有通道的電流,記錄過(guò)程中電極的溶液代替原生質(zhì)的成分。雖然膜片鉗記錄技術(shù)相對(duì)于原來(lái)的單電極電壓鉗有了很大的進(jìn)步,尤其是在單離子通道鉗記錄中,細(xì)胞或腦片的組織選擇和實(shí)驗(yàn)溶液的制備仍然是非常重要的步驟。選擇膜片鉗,選擇細(xì)胞電生理研究的明天!芬蘭全自動(dòng)膜片鉗市場(chǎng)價(jià)膜片鉗技術(shù)是當(dāng)前研究細(xì)胞膜電流及離子通道的蕞重要的技術(shù)。從技術(shù)...
電壓鉗的原理∶用兩根前列直徑0.5um的電極插入細(xì)胞內(nèi),一根電極用作記錄電極以記錄跨膜電位,用另一根電極作為電流注入電極,以固定膜電位。從而實(shí)現(xiàn)固定膜電位的同時(shí)記錄膜電流。電位記錄電極引導(dǎo)的膜電位(Vm)輸入電壓鉗放大器的負(fù)輸入端,而人為控制的指令電位(Vc)輸入正輸入端,放大器的正負(fù)輸入端子等電位,向正輸入端子施加指令電位(Vc)時(shí),經(jīng)過(guò)短路負(fù)端子可使膜片等電較,即Vm=Vc,從而達(dá)到電位鉗制的目的,并可維持一定的時(shí)間。Vc的不同變化將導(dǎo)致Vm的變化,從而引起細(xì)胞膜上電壓依賴(lài)性離子通道的開(kāi)放,通道開(kāi)放引起的離子流反過(guò)來(lái)又引起Vm的變化,致使Vm≠Vc,Vc與Vm的任何差值都會(huì)導(dǎo)致放大器有電壓...
膜片鉗在通道研究中的重要作用用膜片鉗技術(shù)可以直接觀察和分辨單離子通道電流及其開(kāi)閉時(shí)程、區(qū)分離子通道的離子選擇性、同時(shí)可發(fā)現(xiàn)新的離子通道及亞型,并能在記錄單細(xì)胞電流和全細(xì)胞電流的基礎(chǔ)上進(jìn)一步計(jì)算出細(xì)胞膜上的通道數(shù)和開(kāi)放概率,還可以用以研究某些胞內(nèi)或胞外物質(zhì)對(duì)離子通道開(kāi)閉及通道電流的影響等。同時(shí)用于研究細(xì)胞信號(hào)的跨膜轉(zhuǎn)導(dǎo)和細(xì)胞分泌機(jī)制。結(jié)合分子克隆和定點(diǎn)突變技術(shù),膜片鉗技術(shù)可用于離子通道分子結(jié)構(gòu)與生物學(xué)功能關(guān)系的研究。利用膜片鉗技術(shù)還可以用于藥物在其靶受體上作用位點(diǎn)的分析。如神經(jīng)元煙堿受體為配體門(mén)控性離子通道,膜片鉗全細(xì)胞記錄技術(shù)通過(guò)記錄煙堿誘發(fā)電流,可直觀地反映出神經(jīng)元煙堿受體活動(dòng)的全過(guò)程,包括...
膜片鉗技術(shù)的創(chuàng)立取代了電壓鉗技術(shù),是細(xì)胞電生理研究的一個(gè)飛躍,使得離子通道的研究,從宏觀深入到微觀,使昔日的“肉湯生理學(xué)(brothphysiology)”與“閃電生理學(xué)(lightningphysiology)”在分子水平上結(jié)合起來(lái),使人們對(duì)膜通道的認(rèn)識(shí)耳目一新。當(dāng)前,生理學(xué)、生物物理學(xué)、生物化學(xué)、分子生物學(xué)和藥理學(xué)等多種學(xué)科正在把膜片鉗技術(shù)和膜通道蛋白重組技術(shù)、同位素示蹤技術(shù)和光譜技術(shù)等非電生理技術(shù)結(jié)合起來(lái),協(xié)同對(duì)離子通道進(jìn)行較全的研究。不少實(shí)驗(yàn)室已經(jīng)將基因工程與膜片鉗技術(shù)結(jié)合起來(lái),把通道蛋白有目的地重組于人工膜中進(jìn)行研究。設(shè)想將合成的通道蛋白分子接種入機(jī)體以替換有缺陷和異常的通道的功能而...
ePatch的設(shè)計(jì)的一些亮點(diǎn)還包括:可以在軟件中伴隨數(shù)據(jù)進(jìn)行實(shí)驗(yàn)記錄,你不用再專(zhuān)門(mén)拿一個(gè)實(shí)驗(yàn)記錄本了,也不用再擔(dān)心本本上記錄的內(nèi)容找不到對(duì)應(yīng)的數(shù)據(jù)了,系統(tǒng)會(huì)把他們一一對(duì)應(yīng)起來(lái)。電壓電流刺激模式的編輯更為傻瓜,眾多的模塊,直接拖拽就可以,還伴隨著示例圖,讓你對(duì)你編輯的程序一目了然。實(shí)時(shí)的全細(xì)胞參數(shù)估算,包括封接電阻,膜電容,膜電阻等重要參數(shù)強(qiáng)大的在線分析功能,包括電壓鉗模式下的I/Vgraph,eventdetection,F(xiàn)FT,以及電流鉗模式下的APthresholddetection,APfrequency,APslope等數(shù)據(jù)可保存成多種格式,你要是個(gè)程序達(dá)人,可以支持使用Matlab進(jìn)...
膜片鉗放大器的工作模式;(1)電壓鉗模式∶在鉗制細(xì)胞膜電位的基礎(chǔ)上改變膜電位,記錄離子通道電流的變化,記錄的是諸如通道電流;EPSC;IPSC等電流信號(hào)。是膜片鉗的基本工作模式.(2)屯流鉗素向細(xì)胞內(nèi)注入刺激電流,記錄膜電位對(duì)刺激電流的反應(yīng)。記錄的是諸如動(dòng)作電位,EPSP;IPSP等電壓信號(hào)。膜片鉗技術(shù)實(shí)現(xiàn)膜電位固定的關(guān)鍵是在玻璃微電極前列邊緣與細(xì)胞膜之間形成高阻(10GΩ)密封,使電極前列開(kāi)口處相接的細(xì)胞膜片與周?chē)h(huán)境在電學(xué)上隔離,并通過(guò)外加命令電壓鉗制膜電位。玻璃微電極的應(yīng)用使的電生理研究進(jìn)行了重命性的變化。日本細(xì)胞膜片鉗市場(chǎng)價(jià)離子通道結(jié)構(gòu)研究∶目前,絕大多數(shù)離子通道的一級(jí)結(jié)構(gòu)得到了闡明但...
電壓鉗的原理∶用兩根前列直徑0.5um的電極插入細(xì)胞內(nèi),一根電極用作記錄電極以記錄跨膜電位,用另一根電極作為電流注入電極,以固定膜電位。從而實(shí)現(xiàn)固定膜電位的同時(shí)記錄膜電流。電位記錄電極引導(dǎo)的膜電位(Vm)輸入電壓鉗放大器的負(fù)輸入端,而人為控制的指令電位(Vc)輸入正輸入端,放大器的正負(fù)輸入端子等電位,向正輸入端子施加指令電位(Vc)時(shí),經(jīng)過(guò)短路負(fù)端子可使膜片等電較,即Vm=Vc,從而達(dá)到電位鉗制的目的,并可維持一定的時(shí)間。Vc的不同變化將導(dǎo)致Vm的變化,從而引起細(xì)胞膜上電壓依賴(lài)性離子通道的開(kāi)放,通道開(kāi)放引起的離子流反過(guò)來(lái)又引起Vm的變化,致使Vm≠Vc,Vc與Vm的任何差值都會(huì)導(dǎo)致放大器有電壓...
全細(xì)胞膜片鉗記錄(whole-cellpatch-clamprecording)是應(yīng)用*早,也是*廣的鉗位技術(shù),它相當(dāng)于連續(xù)的單電極電壓鉗位記錄,也就是說(shuō)全細(xì)胞記錄類(lèi)似于傳統(tǒng)的細(xì)胞內(nèi)記錄,但它具有更大的優(yōu)越性,如高分辨率、低噪聲、極好的穩(wěn)定性以及能控制細(xì)胞內(nèi)的成分等。全細(xì)胞記錄技采測(cè)定的是一個(gè)細(xì)胞內(nèi)全部**通道的電流,記錄過(guò)程中電極的溶液取代了原細(xì)胞質(zhì)的成分。雖然膜片鉗記錄技術(shù)與*初的單電極電壓鉗位相比進(jìn)步了很多,尤其在單離子通道鉗位記錄方面,細(xì)胞或腦片的組織選擇及實(shí)驗(yàn)溶液的制備仍然是很重要的步驟。封接(seal)是膜片鉗記錄的關(guān)鍵步驟之一。德國(guó)單電極膜片鉗蛋白質(zhì)分子水平把膜電位鉗位電壓調(diào)到-...
高阻封接技術(shù)還明顯降低了電流記錄的背景噪聲,從而戲劇性地提高了時(shí)間、空間及電流分辨率,如時(shí)間分辨率可達(dá)10μs、空間分辨率可達(dá)1平方微米及電流分辨率可達(dá)10-12A。影響電流記錄分辨率的背景噪聲除了來(lái)自于膜片鉗放大器本身外,較主要還是信號(hào)源的熱噪聲。信號(hào)源如同一個(gè)簡(jiǎn)單的電阻,其熱噪聲為σn=4Kt△f/R式中σn為電流的均方差根,K為波爾茲曼常數(shù),t為溫度,△f為測(cè)量帶寬,R為電阻值??梢?jiàn),要得到低噪聲的電流記錄,信號(hào)源的內(nèi)阻必需非常高。如在1kHz帶寬,10%精度的條件下,記錄1pA的電流,信號(hào)源內(nèi)阻應(yīng)為2GΩ以上。電壓鉗技術(shù)只能測(cè)量?jī)?nèi)阻通常達(dá)100kΩ~50MΩ的大細(xì)胞的電流,從而不能用常...
在大多數(shù)膜片鉗實(shí)驗(yàn),要求所有實(shí)驗(yàn)儀器及設(shè)備均具有良好的機(jī)械穩(wěn)定性,以使微電極與細(xì)胞膜之間的相對(duì)運(yùn)動(dòng)盡可能小。防震工作臺(tái)放置倒置顯微鏡和與之固定連接的微操縱器,其他設(shè)備置于臺(tái)外。屏蔽罩由銅絲網(wǎng)制成,接地以防止周?chē)h(huán)境的雜散電場(chǎng)對(duì)膜片鉗放大器的探頭電路的干擾。儀器設(shè)備架要靠近工作臺(tái),便于測(cè)量?jī)x器與光學(xué)儀器配接。倒置顯微鏡是膜片鉗實(shí)驗(yàn)系統(tǒng)的主要光學(xué)部件,它不僅具有較好的視覺(jué)效果,便于將玻璃電極與細(xì)胞的頂部接觸,而且是借助移動(dòng)物鏡來(lái)實(shí)現(xiàn)聚焦,具有較好的機(jī)械穩(wěn)定性。視頻監(jiān)視器主要是用來(lái)監(jiān)視實(shí)驗(yàn)過(guò)程中的操作,特別是能將封接參數(shù)(如封接阻抗)與細(xì)胞的形態(tài)對(duì)應(yīng),以實(shí)現(xiàn)良好的封接。膜片鉗技術(shù),為您揭示細(xì)胞生命活...
電壓鉗的缺點(diǎn)∶電壓鉗技術(shù)目前主要用于巨火細(xì)胞的全細(xì)胞電流研究,特別在分子克隆的卵母細(xì)胞表達(dá)電流的鑒定中發(fā)揮其它技術(shù)不能替代的作用。但也有其致命的弱點(diǎn)1、微電極需刺破細(xì)胞膜進(jìn)入細(xì)胞,以致造成細(xì)胞漿流失,破壞了細(xì)胞生理功能的完整性;2、不能測(cè)定單一通道電流。因?yàn)殡妷恒Q制的膜面積很大,包含著大量隨機(jī)開(kāi)放和關(guān)閉著的通道,而且背景噪音大,往往掩蓋了單一通道的電流。3、對(duì)體積小的細(xì)胞(如哺乳類(lèi)***元,直徑在10-30μm之間)進(jìn)行電壓鉗實(shí)驗(yàn),技術(shù)上有更大的困難。由于電極需插入細(xì)胞,不得不將微電極的前列做得很細(xì),如此細(xì)的前列致使電極阻抗很大,常常是60~-8OMΩ或120~150MΩ(取決于不同的充灌液)...
在大多數(shù)膜片鉗實(shí)驗(yàn),要求所有實(shí)驗(yàn)儀器及設(shè)備均具有良好的機(jī)械穩(wěn)定性,以使微電極與細(xì)胞膜之間的相對(duì)運(yùn)動(dòng)盡可能小。防震工作臺(tái)放置倒置顯微鏡和與之固定連接的微操縱器,其他設(shè)備置于臺(tái)外。屏蔽罩由銅絲網(wǎng)制成,接地以防止周?chē)h(huán)境的雜散電場(chǎng)對(duì)膜片鉗放大器的探頭電路的干擾。儀器設(shè)備架要靠近工作臺(tái),便于測(cè)量?jī)x器與光學(xué)儀器配接。倒置顯微鏡是膜片鉗實(shí)驗(yàn)系統(tǒng)的主要光學(xué)部件,它不僅具有較好的視覺(jué)效果,便于將玻璃電極與細(xì)胞的頂部接觸,而且是借助移動(dòng)物鏡來(lái)實(shí)現(xiàn)聚焦,具有較好的機(jī)械穩(wěn)定性。視頻監(jiān)視器主要是用來(lái)監(jiān)視實(shí)驗(yàn)過(guò)程中的操作,特別是能將封接參數(shù)(如封接阻抗)與細(xì)胞的形態(tài)對(duì)應(yīng),以實(shí)現(xiàn)良好的封接。膜片鉗技術(shù),讓離子通道研究變得...
現(xiàn)在這塊全新的芯片被放置在了跟前置放大器大小類(lèi)似的小盒子中,便成就了這款全球較小的膜片鉗放大器ePatch。體積大幅縮減只是一個(gè)表面,由于細(xì)胞電信號(hào)在被電極記錄到后,直接進(jìn)入了芯片,以較短的路徑直接從模擬信號(hào)轉(zhuǎn)變成了數(shù)字信號(hào),在很大程度上減少了環(huán)境及電路噪音對(duì)信號(hào)的影響,所以這款放大器便可以輕易獲取非常高質(zhì)量且穩(wěn)定的電生理信號(hào)。ePatch體積只為42*18*78mm,重量200g,整套設(shè)備的大小只相當(dāng)于傳統(tǒng)膜片鉗設(shè)備的前置放大器,可以輕松地放入衣服口袋。用USB接口連接電腦后即可使用,無(wú)需額外電源,連接和使用都極為簡(jiǎn)便。沒(méi)有了占地方的放大器,數(shù)模轉(zhuǎn)換器以及相互連接的眾多電線,電源線等等,我們...
膜片鉗技術(shù)發(fā)展歷史:1976年德國(guó)馬普生物物理化學(xué)研究所Neher和Sakmann在青蛙肌細(xì)胞上用雙電極鉗制膜電位的同時(shí),記錄到ACh啟動(dòng)的單通道離子電流,從而產(chǎn)生了膜片鉗技術(shù)。1980年Sigworth等在記錄電極內(nèi)施加5-50cmH2O的負(fù)壓吸引,得到10-100GΩ的高阻封接(Giga-seal),明顯降低了記錄時(shí)的噪聲實(shí)現(xiàn)了單根電極既鉗制膜片電位又記錄單通道電流的突破。1981年Hamill和Neher等對(duì)該技術(shù)進(jìn)行了改進(jìn),引進(jìn)了膜片游離技術(shù)和全細(xì)胞記錄技術(shù),從而使該技術(shù)更趨完善,具有1pA的電流靈敏度、1μm的空間分辨率和10μs的時(shí)間分辨率。1983年10月,《Single-Cha...
鈣成像技術(shù)被廣泛應(yīng)用于實(shí)時(shí)監(jiān)測(cè)神經(jīng)元、心肌以及多種細(xì)胞胞內(nèi)鈣離子的變化,從而檢測(cè)神經(jīng)元、心肌的活動(dòng)情況。這些技術(shù)是人們觀測(cè)神經(jīng)以及多種細(xì)胞活動(dòng)為直接的手段,現(xiàn)已發(fā)展為生命科學(xué)研究的熱點(diǎn),也是國(guó)家自然科學(xué)基金等鼓勵(lì)申報(bào)的重要領(lǐng)域。光遺傳學(xué)調(diào)控技術(shù)是近幾年正在迅速發(fā)展的一項(xiàng)整合了光學(xué)、基因操作技術(shù)、電生理等多學(xué)科交叉的生物技術(shù)。NatureMethods雜志將此技術(shù)評(píng)為"Methodoftheyear2010"[19];美國(guó)麻省理工學(xué)院科技評(píng)述(MITTechnologyReview,2010)在其總結(jié)性文章"Theyearinbiomedicine"中指出:光遺傳學(xué)調(diào)控技術(shù)現(xiàn)已經(jīng)迅速成為生命科學(xué)...
離子通道是一種特殊的膜蛋白,它橫跨整個(gè)膜結(jié)構(gòu),是細(xì)胞內(nèi)部與部外聯(lián)系的橋梁和細(xì)胞內(nèi)外物質(zhì)交換的孔道,當(dāng)通道開(kāi)放時(shí)。細(xì)胞內(nèi)外的一些無(wú)機(jī)離子如Na,kCa等帶電離子可經(jīng)通道順濃度梯度或電位梯度進(jìn)行跨膜擴(kuò)散,從而形成這些帶電離子在膜內(nèi)外的不同分布態(tài)勢(shì),這種態(tài)勢(shì)和在不同狀態(tài)下的動(dòng)態(tài)變化是可興奮細(xì)胞靜息電位和動(dòng)作電的基礎(chǔ)。這些無(wú)機(jī)離子通過(guò)離子通道的進(jìn)圍所產(chǎn)生的電活動(dòng)是生命活動(dòng)的基礎(chǔ),只有在此基礎(chǔ)上才可能有腺體分泌、肌肉收縮、基因表達(dá)、新陳代謝等生命活動(dòng)。離子通道結(jié)構(gòu)和功能障礙決定了許多疾病的發(fā)生和發(fā)展。因此,了解離子通道的結(jié)構(gòu)、功能以及結(jié)構(gòu)與功能的關(guān)系對(duì)于從分子水平深入探討某些疾病的病理生理機(jī)制、發(fā)現(xiàn)特異...
1976年德國(guó)馬普生物物理化學(xué)研究所Neher和Sakmann在青蛙肌細(xì)胞上記錄記錄到AChjihuo的單通道離子電流1980年Sigworth等用負(fù)壓吸引,得到10-100GΩ的高阻封接(Giga-sea1),降低了記錄時(shí)的噪聲1981年Hamill和Neher等引進(jìn)了膜片游離技術(shù)和全細(xì)胞記錄技術(shù)1983年10月,《Single-ChannelRecording》一書(shū)問(wèn)世,奠定了膜片鉗技術(shù)的里程碑。膜片鉗技術(shù)原理膜片鉗技術(shù)是用玻璃微電極接觸細(xì)胞,形成吉?dú)W姆(GΩ)阻抗,使得與電極前列開(kāi)口處相接的細(xì)胞膜的膜片與周?chē)陔妼W(xué)上絕緣。離子通道研究,從膜片鉗開(kāi)始,開(kāi)啟科學(xué)探索之旅!進(jìn)口腦片膜片鉗 ...
膜片鉗技術(shù):從一小片膜(約幾平方微米)上獲取電子信息的技術(shù),即保持跨膜電壓恒壓箝位的技術(shù),從而測(cè)量通過(guò)膜的離子電流。通過(guò)研究離子通道中的離子流動(dòng),可以了解離子輸運(yùn)、信號(hào)傳遞等信息?;驹?利用負(fù)反饋電子電路,將前排微電極吸附的細(xì)胞膜電位固定在一定水平,動(dòng)態(tài)或靜態(tài)觀察通過(guò)通道的微小離子電流,從而研究其功能。一種研究離子通道的電生理技術(shù)是施加負(fù)壓,使玻璃微電極前沿(開(kāi)口直徑約1μm)與細(xì)胞膜緊密接觸,形成高阻抗密封,可以準(zhǔn)確記錄離子通道的微小電流??芍苽涑扇N單通道記錄模式:細(xì)胞貼附、內(nèi)面向外、外面向內(nèi),以及另一種多通道全細(xì)胞記錄模式。膜片鉗技術(shù)實(shí)現(xiàn)了小膜的隔離和高阻密封的形成。由于高阻密封,背...