手機(jī)微電機(jī)在線自動(dòng)分揀系統(tǒng)。該系統(tǒng)精細(xì)高效的采集微型馬達(dá)工作時(shí)的聲音信號(hào),然后通過聲音分析算法進(jìn)行質(zhì)量特征值的提取,能夠與現(xiàn)有的人工檢測(cè)進(jìn)行比對(duì)和分析,將以往人工檢測(cè)形成的數(shù)據(jù)集標(biāo)簽,結(jié)合深度學(xué)習(xí)算法進(jìn)行良品與次品的分類。并且由于微電機(jī)每天的生產(chǎn)數(shù)量都在幾千萬臺(tái),很適合使用深度學(xué)習(xí)等機(jī)器學(xué)習(xí)方法,因此通過機(jī)器學(xué)習(xí)方法,對(duì)大量電機(jī)特征數(shù)據(jù)(特別是故障電機(jī))進(jìn)行分析處理,對(duì)測(cè)試電機(jī)進(jìn)行良品檢測(cè)和分類,準(zhǔn)確率達(dá)到95%以上。β-Star監(jiān)測(cè)系統(tǒng)是盈蓓德智能科技有限公司的產(chǎn)品,為大型電機(jī)提供數(shù)據(jù)監(jiān)測(cè)和故障預(yù)判服務(wù)。變速箱監(jiān)測(cè)公司隨著科技發(fā)展, 各類工程設(shè)備的工作和運(yùn)行環(huán)境變得越來越復(fù)雜. 作為機(jī)械設(shè)備...
柴油機(jī)狀態(tài)監(jiān)測(cè)與故障診斷系統(tǒng)是一個(gè)集數(shù)據(jù)采集與分析、狀態(tài)監(jiān)測(cè)、故障診斷為一體的多任務(wù)處理系統(tǒng), 可實(shí)現(xiàn)柴油機(jī)監(jiān)測(cè)、保護(hù)、分析、診斷等功能。包括數(shù)據(jù)采集與工況監(jiān)測(cè)、活塞缸套磨損監(jiān)測(cè)分析、主軸承磨損狀態(tài)監(jiān)測(cè)分析、氣閥間隙異常監(jiān)測(cè)分析和瞬時(shí)轉(zhuǎn)速監(jiān)測(cè)分析等各種功能。信號(hào)分析、特征提取及診斷原理是每個(gè)監(jiān)測(cè)診斷子功能的**部分, 各子功能都有相應(yīng)的信號(hào)分析與特征提取方法, 包括信號(hào)預(yù)處理、時(shí)域、頻域分析、小波分析等, 自動(dòng)形成反映柴油機(jī)運(yùn)行狀態(tài)的特征量, 為系統(tǒng)的診斷推理提供信息來源。采用模糊聚類理論來檢驗(yàn)特征參量的有效性、建立故障標(biāo)準(zhǔn)征兆群, 并運(yùn)用模糊貼近度來實(shí)施故障類型的診斷識(shí)別。盈蓓德科技順應(yīng)行業(yè)...
常見的設(shè)備監(jiān)測(cè)數(shù)據(jù)包含以下幾類:1.運(yùn)行數(shù)據(jù):包括設(shè)備的運(yùn)轉(zhuǎn)時(shí)間、運(yùn)轉(zhuǎn)速度、負(fù)載情況、溫度、壓力等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的運(yùn)行狀態(tài)和性能表現(xiàn),以便進(jìn)行運(yùn)行效率評(píng)估、健康狀況評(píng)估以及預(yù)測(cè)維護(hù)等。2.電氣數(shù)據(jù):包括設(shè)備的電流、電壓、功率、電阻等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的電氣性能和電能消耗情況,以便進(jìn)行能效評(píng)估、設(shè)備故障診斷等。3.振動(dòng)數(shù)據(jù):包括設(shè)備的振動(dòng)幅值、頻率、相位等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的振動(dòng)情況,以便進(jìn)行故障診斷和預(yù)測(cè)維護(hù)等。4.聲音數(shù)據(jù):包括設(shè)備的聲音頻率、聲音強(qiáng)度、聲音特征等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的聲學(xué)性能,以便進(jìn)行故障診斷和預(yù)測(cè)維護(hù)等。5.圖像數(shù)據(jù):包括設(shè)備的照片、視頻...
深度學(xué)習(xí)技術(shù)已在滾動(dòng)軸承故障監(jiān)測(cè)和診斷領(lǐng)域取得了成功應(yīng)用, 但面對(duì)不停機(jī)情況下的早期故障在線監(jiān)測(cè)問題, 仍存在著早期故障特征表示不充分、誤報(bào)警率高等不足. 為解決上述問題, 本文從時(shí)序異常檢測(cè)的角度出發(fā), 提出了一種基于深度遷移學(xué)習(xí)的早期故障在線檢測(cè)方法. 首先, 提出一種面向多域遷移的深度自編碼網(wǎng)絡(luò), 通過構(gòu)建具有改進(jìn)的比較大均值差異正則項(xiàng)和Laplace正則項(xiàng)的損失函數(shù), 在自適應(yīng)提取不同域數(shù)據(jù)的公共特征表示同時(shí), 提高正常狀態(tài)和早期故障狀態(tài)之間特征的差異性; 基于該特征表示, 提出一種基于時(shí)序異常模式的在線檢測(cè)模型, 利用離線軸承正常狀態(tài)的排列熵值構(gòu)建報(bào)警閾值, 實(shí)現(xiàn)在線數(shù)據(jù)中異常序列的...
設(shè)備狀態(tài)監(jiān)測(cè)和故障診斷技術(shù)是設(shè)備維護(hù)手段之一。設(shè)備的故障監(jiān)測(cè)診斷技術(shù),就是利用科學(xué)的檢測(cè)方法和現(xiàn)代化技術(shù)手段,對(duì)設(shè)備目前的運(yùn)行狀態(tài)進(jìn)行監(jiān)測(cè)和排查,從而判斷出設(shè)備運(yùn)行狀態(tài)的可靠性,確認(rèn)其局部或整機(jī)是否正常運(yùn)行。煤礦用機(jī)電設(shè)備溫度振動(dòng)監(jiān)測(cè)系統(tǒng)***用于煤礦主扇、壓風(fēng)機(jī)、鋼絲繩牽引帶式輸送機(jī)、滾筒帶式輸送機(jī)、排水泵和電動(dòng)機(jī)、提升機(jī)等,有助于掌握設(shè)備運(yùn)行工況中的溫度振動(dòng)數(shù)據(jù)。 提升機(jī)、鋼絲繩牽引、滾筒帶式輸送機(jī)、皮帶機(jī)、空壓機(jī)、壓風(fēng)機(jī)、水泵等煤礦機(jī)電設(shè)備要求增加電動(dòng)機(jī)及主要軸承溫度和振動(dòng)監(jiān)測(cè)。裝置功能:1、提升機(jī)、水泵、皮帶機(jī)等設(shè)備電動(dòng)機(jī)主軸承溫度振動(dòng)在線監(jiān)測(cè)2、礦用高壓異步電動(dòng)機(jī)軸承溫度振...
設(shè)備故障診斷首先要獲取設(shè)備運(yùn)行中各種狀態(tài)信息,如:振動(dòng)、聲音、變形、位移、應(yīng)力、裂紋、磨損、溫度、壓力、流量、電流、轉(zhuǎn)速、轉(zhuǎn)矩、功率等各種參數(shù)。振動(dòng)信號(hào)在線監(jiān)測(cè)診斷技術(shù)是設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷的重要手段。機(jī)械振動(dòng)引起的設(shè)備損壞率很高,振動(dòng)大即是設(shè)備有故障的表現(xiàn)。對(duì)于設(shè)備的振動(dòng)信號(hào)測(cè)試和分析,可獲得機(jī)體、轉(zhuǎn)子或其他零部件的振動(dòng)幅值、頻率和相位三個(gè)基本要素,經(jīng)過對(duì)信號(hào)的分析處理和識(shí)別,可能了解到機(jī)器的振動(dòng)特點(diǎn)、結(jié)構(gòu)強(qiáng)弱、振動(dòng)來源,故障部位和故障原因,為診斷決策提供依據(jù),因此,利用振動(dòng)信號(hào)診斷故障的技術(shù)應(yīng)用**為普遍。振動(dòng)信號(hào)中含有豐富的機(jī)械狀態(tài)信息量,可反映設(shè)備設(shè)計(jì)是否合理、零部件是否存在缺陷、材...
隨著科技發(fā)展, 各類工程設(shè)備的工作和運(yùn)行環(huán)境變得越來越復(fù)雜. 作為機(jī)械設(shè)備的關(guān)鍵零部件, 滾動(dòng)軸承在長(zhǎng)期大載荷、強(qiáng)沖擊等復(fù)雜工況下, 極易產(chǎn)生各種故障, 導(dǎo)致機(jī)械工作狀況惡化. 針對(duì)軸承的故障預(yù)測(cè)與健康管理技術(shù)應(yīng)運(yùn)而生. 若能在故障發(fā)生初期即進(jìn)行準(zhǔn)確、可靠的檢測(cè)和診斷, 則有助于進(jìn)行及時(shí)維修, 避免嚴(yán)重事故的發(fā)生. 早期故障檢測(cè)已成為PHM的關(guān)鍵技術(shù)環(huán)節(jié)之一. 近年來, 隨著傳感技術(shù)和機(jī)器學(xué)習(xí)技術(shù)的快速發(fā)展, 數(shù)據(jù)驅(qū)動(dòng)的智能化故障檢測(cè)和診斷技術(shù)受到***關(guān)注. 如何利用歷史采集的狀態(tài)監(jiān)控?cái)?shù)據(jù)、提高目標(biāo)軸承早期故障檢測(cè)結(jié)果的準(zhǔn)確性和穩(wěn)定性成為研究熱點(diǎn)和難點(diǎn), 具有明確的學(xué)術(shù)價(jià)值和應(yīng)用需求.本文關(guān)...
電機(jī)狀態(tài)監(jiān)測(cè)和故障診斷技術(shù)是一種了解和掌握電機(jī)在使用過程中的狀態(tài),確定其整體或局部正?;虍惓?,早期發(fā)現(xiàn)故障及其原因,并能預(yù)報(bào)故障發(fā)展趨勢(shì)的技術(shù),電機(jī)狀態(tài)監(jiān)測(cè)與故障診斷技術(shù)包括識(shí)別電機(jī)狀態(tài)監(jiān)測(cè)和預(yù)測(cè)發(fā)展趨勢(shì)兩方面。設(shè)備狀態(tài)是指設(shè)備運(yùn)行的工況,由設(shè)備運(yùn)行過程中的各種性能參數(shù)以及設(shè)備運(yùn)行過程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標(biāo)參數(shù)來描述。設(shè)備狀態(tài)的類型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測(cè)是通過測(cè)定以上參數(shù),并進(jìn)行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對(duì)設(shè)備進(jìn)行定期或連續(xù)監(jiān)測(cè),包括采用各種測(cè)試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運(yùn)行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢(shì)規(guī)律,為設(shè)備的性能...
動(dòng)力裝備全壽命周期監(jiān)測(cè)診斷方面:實(shí)現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動(dòng)態(tài)自適應(yīng)監(jiān)測(cè)、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運(yùn)行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識(shí)的適應(yīng)性與可靠性,基于運(yùn)行過程信息反映裝備劣化趨勢(shì)與故障發(fā)展規(guī)律,來提高故障早期辨識(shí)能力。動(dòng)力裝備全生命周期性能優(yōu)化服務(wù)方面:提供了轉(zhuǎn)子全息動(dòng)平衡快速響應(yīng)與服務(wù)支持、以全息譜為**的失衡故障確診、動(dòng)力裝備轉(zhuǎn)子和軸系平衡配重方案優(yōu)化?;谖锫?lián)網(wǎng)和網(wǎng)絡(luò)化監(jiān)測(cè)診斷將產(chǎn)品監(jiān)測(cè)診斷與運(yùn)行服務(wù)支持有機(jī)集成一體,在應(yīng)用中實(shí)現(xiàn)動(dòng)力裝備常見故障診斷準(zhǔn)確率達(dá)80%以上??蓱?yīng)用于風(fēng)力大電機(jī)、空壓機(jī)、氮壓機(jī)等大型動(dòng)力裝備的集群化診斷領(lǐng)域。...
針對(duì)刀具磨損狀態(tài)在實(shí)際生產(chǎn)加工過程中難以在線監(jiān)測(cè)這一問題,提出一種通過OPCUA通信技術(shù)獲取機(jī)床內(nèi)部數(shù)據(jù),對(duì)當(dāng)前的刀具磨損狀態(tài)進(jìn)行識(shí)別的方法。通過OPCUA采集機(jī)床內(nèi)部實(shí)時(shí)數(shù)據(jù)并將其與實(shí)際加工情景緊密結(jié)合,能直接反映當(dāng)前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識(shí)別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測(cè)模型,模型在訓(xùn)練集和在線驗(yàn)證試驗(yàn)中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識(shí)別的方法在投入使用時(shí)還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測(cè)得的,而實(shí)際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進(jìn)行變參數(shù)試驗(yàn),考慮加工參數(shù)對(duì)于刀具磨損的...
隨著科技發(fā)展, 各類工程設(shè)備的工作和運(yùn)行環(huán)境變得越來越復(fù)雜. 作為機(jī)械設(shè)備的關(guān)鍵零部件, 滾動(dòng)軸承在長(zhǎng)期大載荷、強(qiáng)沖擊等復(fù)雜工況下, 極易產(chǎn)生各種故障, 導(dǎo)致機(jī)械工作狀況惡化. 針對(duì)軸承的故障預(yù)測(cè)與健康管理技術(shù)應(yīng)運(yùn)而生. 若能在故障發(fā)生初期即進(jìn)行準(zhǔn)確、可靠的檢測(cè)和診斷, 則有助于進(jìn)行及時(shí)維修, 避免嚴(yán)重事故的發(fā)生. 早期故障檢測(cè)已成為PHM的關(guān)鍵技術(shù)環(huán)節(jié)之一. 近年來, 隨著傳感技術(shù)和機(jī)器學(xué)習(xí)技術(shù)的快速發(fā)展, 數(shù)據(jù)驅(qū)動(dòng)的智能化故障檢測(cè)和診斷技術(shù)受到***關(guān)注. 如何利用歷史采集的狀態(tài)監(jiān)控?cái)?shù)據(jù)、提高目標(biāo)軸承早期故障檢測(cè)結(jié)果的準(zhǔn)確性和穩(wěn)定性成為研究熱點(diǎn)和難點(diǎn), 具有明確的學(xué)術(shù)價(jià)值和應(yīng)用需求.本文關(guān)...
在預(yù)防性維護(hù)的應(yīng)用中,振動(dòng)是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是由于在大型旋轉(zhuǎn)機(jī)械設(shè)備的所有故障中,振動(dòng)問題出現(xiàn)的概率比較高;另一方面,振動(dòng)信號(hào)包含了豐富的機(jī)械及運(yùn)行的狀態(tài)信息;第三,振動(dòng)信號(hào)易于拾取,便于在不影響機(jī)械運(yùn)行的情況下實(shí)行在線監(jiān)測(cè)和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護(hù)需要重點(diǎn)監(jiān)控振動(dòng)量的變化。其預(yù)測(cè)性診斷技術(shù)對(duì)于制造業(yè)、風(fēng)電等的行業(yè)的運(yùn)維具有非常重大的意義。通過設(shè)備振動(dòng)等狀態(tài)的預(yù)測(cè)性維護(hù),可以及時(shí)發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對(duì)于一些不是因?yàn)樵O(shè)備問題而存在的固有振動(dòng),振動(dòng)強(qiáng)度的不必要增加會(huì)對(duì)部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動(dòng)隔離技術(shù)來解決和...
噪聲與振動(dòng)控制行業(yè)的集中度比較低,行業(yè)內(nèi)企業(yè)規(guī)模偏小,市場(chǎng)份額普遍較低。國(guó)內(nèi)現(xiàn)有產(chǎn)品在振動(dòng)噪聲監(jiān)測(cè)方面和振動(dòng)控制方面的功能性不強(qiáng),在振動(dòng)噪聲監(jiān)測(cè)方面,*具有振動(dòng)噪聲數(shù)據(jù)采集和簡(jiǎn)單的信號(hào)后處理功能,不能直接診斷設(shè)備和識(shí)別故障。而客戶需要額外聘請(qǐng)專業(yè)人員分析得到的數(shù)據(jù)才能完成診斷和故障識(shí)別。這樣不僅**降低了對(duì)設(shè)備的監(jiān)控效率,同時(shí)增加了企業(yè)的人力成本。大多數(shù)公司提供的預(yù)防性維護(hù)方案雖然宣稱可以做到故障預(yù)判,但是誤判率和糊判率較高,準(zhǔn)確度不夠。國(guó)外的同類產(chǎn)品均對(duì)華出口限制,*有少部分初級(jí)技術(shù)通過特殊渠道進(jìn)入我國(guó)市場(chǎng)。電機(jī)健康管理是基于各類數(shù)據(jù)監(jiān)測(cè)和故障預(yù)測(cè)對(duì)設(shè)備完好性、可用性的評(píng)估和控制。EOL監(jiān)測(cè)...
遠(yuǎn)程終端廣泛應(yīng)用于工業(yè)互聯(lián)網(wǎng)、分布式數(shù)據(jù)采集、設(shè)備狀態(tài)的在線監(jiān)測(cè),能夠進(jìn)行前端數(shù)據(jù)清洗和邊緣計(jì)算,通過對(duì)歷史數(shù)據(jù)趨勢(shì)分析、設(shè)備數(shù)據(jù)機(jī)理分析、統(tǒng)計(jì)分析等大數(shù)據(jù)分析,對(duì)設(shè)備的狀態(tài)做出有效可靠的健康狀態(tài)評(píng)判,從而切實(shí)有效的提高設(shè)備的維護(hù)能力。遠(yuǎn)程終端可實(shí)現(xiàn)對(duì)電源電壓、設(shè)備狀態(tài)的自檢,分析計(jì)量故障等信息,及時(shí)發(fā)現(xiàn)計(jì)量異?!,F(xiàn)場(chǎng)監(jiān)測(cè)箱開門、斷電、設(shè)備運(yùn)行等異常信息也能夠主動(dòng)發(fā)送報(bào)警信息到監(jiān)測(cè)中心,實(shí)現(xiàn)設(shè)備在線監(jiān)診的準(zhǔn)確性、完整性、及時(shí)性和可靠性。有效的刀具監(jiān)測(cè)系統(tǒng)可大幅度提效率、提高工件尺寸精度和一致性、減少生產(chǎn)成本,實(shí)現(xiàn)數(shù)控加工自動(dòng)化。紹興仿真監(jiān)測(cè)系統(tǒng)供應(yīng)商 電機(jī)馬達(dá)監(jiān)控系統(tǒng)適用于石油、化工、電力、...
設(shè)備故障診斷首先要獲取設(shè)備運(yùn)行中各種狀態(tài)信息,如:振動(dòng)、聲音、變形、位移、應(yīng)力、裂紋、磨損、溫度、壓力、流量、電流、轉(zhuǎn)速、轉(zhuǎn)矩、功率等各種參數(shù)。振動(dòng)信號(hào)在線監(jiān)測(cè)診斷技術(shù)是設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷的重要手段。機(jī)械振動(dòng)引起的設(shè)備損壞率很高,振動(dòng)大即是設(shè)備有故障的表現(xiàn)。對(duì)于設(shè)備的振動(dòng)信號(hào)測(cè)試和分析,可獲得機(jī)體、轉(zhuǎn)子或其他零部件的振動(dòng)幅值、頻率和相位三個(gè)基本要素,經(jīng)過對(duì)信號(hào)的分析處理和識(shí)別,可能了解到機(jī)器的振動(dòng)特點(diǎn)、結(jié)構(gòu)強(qiáng)弱、振動(dòng)來源,故障部位和故障原因,為診斷決策提供依據(jù),因此,利用振動(dòng)信號(hào)診斷故障的技術(shù)應(yīng)用**為普遍。振動(dòng)信號(hào)中含有豐富的機(jī)械狀態(tài)信息量,可反映設(shè)備設(shè)計(jì)是否合理、零部件是否存在缺陷、材...
基于人工神經(jīng)網(wǎng)絡(luò)的診斷方法簡(jiǎn)單處理單元***連接而成的復(fù)雜的非線性系統(tǒng),具有學(xué)習(xí)能力,自適應(yīng)能力,非線性逼近能力等。故障診斷的任務(wù)從映射角度看就是從征兆到故障類型的映射。用ANN技術(shù)處理故障診斷問題,不僅能進(jìn)行復(fù)雜故障診斷模式的識(shí)別,還能進(jìn)行故障嚴(yán)重性評(píng)估和故障預(yù)測(cè),由于ANN能自動(dòng)獲取診斷知識(shí),使診斷系統(tǒng)具有自適應(yīng)能力?;诩尚椭悄芟到y(tǒng)的診斷方法隨著電機(jī)設(shè)備系統(tǒng)越來越復(fù)雜,依靠單一的故障診斷技術(shù)已難滿足復(fù)雜電機(jī)設(shè)備的故障診斷要求,因此上述各種診斷技術(shù)集成起來形成的集成智能診斷系統(tǒng)成為當(dāng)前電機(jī)設(shè)備故障診斷研究的熱點(diǎn)。主要的集成技術(shù)有:基于規(guī)則的**系統(tǒng)與ANN的結(jié)合,模糊邏輯與ANN的結(jié)合,...
通過對(duì)電機(jī)部分放電、振動(dòng)、電流特征分析、磁通量和磁芯完整性的在線監(jiān)測(cè)和離線檢測(cè),為電機(jī)轉(zhuǎn)子和定子繞組的狀態(tài)維修提供信息。通過監(jiān)測(cè)電機(jī)的電流、電壓信號(hào),在自身內(nèi)部建立數(shù)學(xué)模型,對(duì)被監(jiān)電機(jī)進(jìn)行自我學(xué)習(xí),完成學(xué)習(xí)后開始進(jìn)行監(jiān)測(cè)。通過將測(cè)量電流與數(shù)學(xué)模型計(jì)算所得電流進(jìn)行差分比較,得到一組數(shù)值,再將該數(shù)值通過傅里葉分析,得到一個(gè)功率譜密度圖。功率頻譜圖中,各頻率段的突加分量**不同的故障類型,**終給出報(bào)告,告知維修團(tuán)隊(duì)?wèi)?yīng)該在接下來多久時(shí)間內(nèi)需對(duì)該故障進(jìn)行處理。維修團(tuán)隊(duì)根據(jù)報(bào)告,按實(shí)際情況采購備件、排產(chǎn)、計(jì)劃停機(jī)維修,比較低限度的減少了設(shè)備停機(jī)時(shí)間,降低了非計(jì)劃性停機(jī)帶來的損失。 大型旋轉(zhuǎn)機(jī)械振動(dòng)狀...
通過對(duì)電機(jī)部分放電、振動(dòng)、電流特征分析、磁通量和磁芯完整性的在線監(jiān)測(cè)和離線檢測(cè),為電機(jī)轉(zhuǎn)子和定子繞組的狀態(tài)維修提供信息。通過監(jiān)測(cè)電機(jī)的電流、電壓信號(hào),在自身內(nèi)部建立數(shù)學(xué)模型,對(duì)被監(jiān)電機(jī)進(jìn)行自我學(xué)習(xí),完成學(xué)習(xí)后開始進(jìn)行監(jiān)測(cè)。通過將測(cè)量電流與數(shù)學(xué)模型計(jì)算所得電流進(jìn)行差分比較,得到一組數(shù)值,再將該數(shù)值通過傅里葉分析,得到一個(gè)功率譜密度圖。功率頻譜圖中,各頻率段的突加分量**不同的故障類型,**終給出報(bào)告,告知維修團(tuán)隊(duì)?wèi)?yīng)該在接下來多久時(shí)間內(nèi)需對(duì)該故障進(jìn)行處理。維修團(tuán)隊(duì)根據(jù)報(bào)告,按實(shí)際情況采購備件、排產(chǎn)、計(jì)劃停機(jī)維修,比較低限度的減少了設(shè)備停機(jī)時(shí)間,降低了非計(jì)劃性停機(jī)帶來的損失。 盈蓓德科技順應(yīng)行業(yè)...
刀具監(jiān)測(cè)主要采用人工檢測(cè)、離線檢測(cè)和在線檢測(cè)三種策略。人工檢查是指工人在加工過程中可以憑經(jīng)驗(yàn)檢查刀具的狀態(tài);離線檢測(cè)是在加工前專門對(duì)刀具進(jìn)行檢測(cè),預(yù)測(cè)其壽命,看是否能勝任當(dāng)前的加工;在線檢測(cè)又稱實(shí)時(shí)檢測(cè),是在加工過程中對(duì)刀具進(jìn)行實(shí)時(shí)檢測(cè),并根據(jù)檢測(cè)結(jié)果做出相應(yīng)的處理。目前刀具檢測(cè)的算法有很多,有的是利用理論計(jì)算刀具上應(yīng)力的變化來判斷刀具的損傷.有的是利用時(shí)間序列分析來檢測(cè)刀具,有的是利用神經(jīng)網(wǎng)絡(luò)技術(shù)來檢測(cè)刀具。還有的是利用小波變換理論和神經(jīng)網(wǎng)絡(luò)技術(shù)來檢測(cè)刀具,但都是以理論為主??紤]到刀具的塑性損傷在數(shù)控加工中很少發(fā)生,磨損對(duì)數(shù)控加工的安全性影響很小,并且可以通過離線檢測(cè)進(jìn)行加工,通過在線檢測(cè),...
電機(jī)狀態(tài)監(jiān)測(cè)和故障診斷技術(shù)是一種了解和掌握電機(jī)在使用過程中的狀態(tài),確定其整體或局部正?;虍惓#缙诎l(fā)現(xiàn)故障及其原因,并能預(yù)報(bào)故障發(fā)展趨勢(shì)的技術(shù),電機(jī)狀態(tài)監(jiān)測(cè)與故障診斷技術(shù)包括識(shí)別電機(jī)狀態(tài)監(jiān)測(cè)和預(yù)測(cè)發(fā)展趨勢(shì)兩方面。設(shè)備狀態(tài)是指設(shè)備運(yùn)行的工況,由設(shè)備運(yùn)行過程中的各種性能參數(shù)以及設(shè)備運(yùn)行過程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標(biāo)參數(shù)來描述。設(shè)備狀態(tài)的類型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測(cè)是通過測(cè)定以上參數(shù),并進(jìn)行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對(duì)設(shè)備進(jìn)行定期或連續(xù)監(jiān)測(cè),包括采用各種測(cè)試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運(yùn)行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢(shì)規(guī)律,為設(shè)備的性能...
深度學(xué)習(xí)技術(shù)已在滾動(dòng)軸承故障監(jiān)測(cè)和診斷領(lǐng)域取得了成功應(yīng)用, 但面對(duì)不停機(jī)情況下的早期故障在線監(jiān)測(cè)問題, 仍存在著早期故障特征表示不充分、誤報(bào)警率高等不足. 為解決上述問題, 本文從時(shí)序異常檢測(cè)的角度出發(fā), 提出了一種基于深度遷移學(xué)習(xí)的早期故障在線檢測(cè)方法. 首先, 提出一種面向多域遷移的深度自編碼網(wǎng)絡(luò), 通過構(gòu)建具有改進(jìn)的比較大均值差異正則項(xiàng)和Laplace正則項(xiàng)的損失函數(shù), 在自適應(yīng)提取不同域數(shù)據(jù)的公共特征表示同時(shí), 提高正常狀態(tài)和早期故障狀態(tài)之間特征的差異性; 基于該特征表示, 提出一種基于時(shí)序異常模式的在線檢測(cè)模型, 利用離線軸承正常狀態(tài)的排列熵值構(gòu)建報(bào)警閾值, 實(shí)現(xiàn)在線數(shù)據(jù)中異常序列的...
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài),可視為模式識(shí)別任務(wù)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號(hào),包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的系統(tǒng)狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出...
刀具損壞的形式主要是磨損和破損。在現(xiàn)代化的生產(chǎn)系統(tǒng)(如FMS、CIMS等)中,當(dāng)?shù)毒甙l(fā)生非正常的磨損或破損時(shí),如不能及時(shí)發(fā)現(xiàn)并采取措施,將導(dǎo)致工件報(bào)廢,甚至機(jī)床損壞,造成很大的損失。因此,對(duì)刀具狀態(tài)進(jìn)行監(jiān)控非常重要。刀具破損監(jiān)測(cè)可分為直接監(jiān)測(cè)和間接監(jiān)測(cè)兩種。所謂直接監(jiān)測(cè),即直接觀察刀具狀態(tài),確認(rèn)刀具是否破損。其中**典型的方法是ITV(IndustrialTelevision,工業(yè)電視)攝像法。間接監(jiān)測(cè)法即利用與刀具破損相關(guān)的其它物理量或物理現(xiàn)象,間接判斷刀具是否已經(jīng)破損或是否有即將破損的先兆。這樣的方法有測(cè)力法、測(cè)溫法、測(cè)振法、測(cè)主電機(jī)電流法和測(cè)聲發(fā)射法等。盈蓓德科技自主開發(fā)了大型旋轉(zhuǎn)機(jī)械在...
電動(dòng)機(jī)是機(jī)械加工中不可或缺的必備工具,電動(dòng)機(jī)在運(yùn)轉(zhuǎn)中常產(chǎn)生各種故障,為保證電動(dòng)機(jī)運(yùn)行安全,對(duì)電動(dòng)機(jī)運(yùn)行狀態(tài)進(jìn)行在線監(jiān)測(cè)尤為重要。以三相異步電動(dòng)機(jī)為研究對(duì)象,采用傳感器獲取電動(dòng)機(jī)運(yùn)行中的重要參數(shù)(振動(dòng)、噪聲、轉(zhuǎn)速及溫度等),由時(shí)/頻域分析及能量分析等方法提取電動(dòng)機(jī)運(yùn)行特征量,構(gòu)成特征向量,采用BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練的方法建立狀態(tài)識(shí)別模型,通過BP神經(jīng)網(wǎng)絡(luò)模式識(shí)別方法,判斷電動(dòng)機(jī)運(yùn)行的狀態(tài),在此基礎(chǔ)上,利用Lab VIEW軟件構(gòu)建可視化監(jiān)測(cè)系統(tǒng),將電動(dòng)機(jī)運(yùn)行參數(shù)及狀態(tài)實(shí)時(shí)顯示在可視化界面中,完成在線智能監(jiān)測(cè)。電機(jī)監(jiān)測(cè)系統(tǒng)幫助識(shí)別處于初期階段的機(jī)械和液壓故障,從而制定更為合理的輔助維護(hù)計(jì)劃。寧波設(shè)備監(jiān)測(cè)特...
基于交流電機(jī)的特征量:通過故障機(jī)理分析可知,交流電機(jī)運(yùn)行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設(shè)備在線監(jiān)測(cè)的被測(cè)信號(hào),準(zhǔn)確地提取這些故障特征量,這是故障診斷的關(guān)鍵。故障特征量,特別是反映早期故障征兆的信號(hào)往往比較弱,而相應(yīng)的背景噪聲比較弱,常規(guī)的監(jiān)測(cè)方法,因受傳感器的準(zhǔn)確性、微處理器的速度、A/D轉(zhuǎn)換的分辨率與轉(zhuǎn)換速度等硬件條件的限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測(cè)量手段與信號(hào)處理方法。例如小波變換原理的應(yīng)用。電機(jī)故障的現(xiàn)代分析方法:基于信號(hào)變換的診斷方法電機(jī)設(shè)備的許多故障信息是以調(diào)制的形式...
預(yù)測(cè)性維護(hù)對(duì)制造業(yè)在節(jié)省成本損耗、提升企業(yè)的生產(chǎn)效率和產(chǎn)業(yè)智能化升級(jí)具有非常重要的意義。國(guó)內(nèi)工業(yè)現(xiàn)場(chǎng)的存量設(shè)備數(shù)目相當(dāng)可觀,絕大多數(shù)還沒采用有效的預(yù)測(cè)性維護(hù)方案,尤其是大型旋轉(zhuǎn)類設(shè)備,一般都是主要生產(chǎn)運(yùn)行設(shè)備而且故障率相對(duì)較高,需要重點(diǎn)監(jiān)控和維護(hù)。通過振動(dòng)分析和診治對(duì)旋轉(zhuǎn)類設(shè)備進(jìn)行預(yù)防性維護(hù)無疑向我們展示了一個(gè)極具發(fā)展?jié)摿Φ氖袌?chǎng)。預(yù)測(cè)性維護(hù)在不久的未來將愈加凸顯工業(yè)物聯(lián)網(wǎng)中關(guān)鍵的應(yīng)用優(yōu)勢(shì),市場(chǎng)規(guī)模及需求將快速增長(zhǎng)盈蓓德科技提供一種既滿足現(xiàn)場(chǎng)機(jī)械設(shè)備監(jiān)測(cè)要求,實(shí)現(xiàn)振動(dòng)數(shù)據(jù)采集及分析,造價(jià)較低的振動(dòng)監(jiān)測(cè)系統(tǒng)。溫州監(jiān)測(cè)特點(diǎn) 傳統(tǒng)維護(hù)模式中的故障后維護(hù)與定期維護(hù)將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制...
預(yù)測(cè)性維護(hù)應(yīng)運(yùn)而生。其是以狀態(tài)為依據(jù)的維修,主要是對(duì)設(shè)備在運(yùn)行中產(chǎn)生的二次效應(yīng)(如振動(dòng)、噪聲、沖擊脈沖、油樣成分、溫度等)進(jìn)行連續(xù)在線的狀態(tài)監(jiān)測(cè)及數(shù)據(jù)分析,診斷并預(yù)測(cè)設(shè)備故障的發(fā)展趨勢(shì),提前制定預(yù)測(cè)性維護(hù)計(jì)劃并實(shí)施檢維修的行為??傮w來看,狀態(tài)監(jiān)測(cè)和故障診斷是判斷預(yù)測(cè)性維護(hù)是否合理的根本所在,數(shù)據(jù)狀態(tài)的連續(xù)監(jiān)測(cè)和遠(yuǎn)程傳輸上傳相對(duì)已經(jīng)比較成熟,而狀態(tài)預(yù)測(cè)和故障診斷主要還是依靠人工分析實(shí)現(xiàn),診斷分析人員通過趨勢(shì)?波形?頻譜等專業(yè)分析工具,結(jié)合傳動(dòng)結(jié)構(gòu)?機(jī)械部件參數(shù)等信息,實(shí)現(xiàn)設(shè)備故障的精細(xì)定位。其發(fā)展趨勢(shì)是將物聯(lián)網(wǎng)及人工智能技術(shù)引入狀態(tài)預(yù)測(cè)及故障的智能診斷,從而降低誤判概率,大幅提升診斷效率和準(zhǔn)確性...
電機(jī)狀態(tài)監(jiān)測(cè)和振動(dòng)分析提供加速度計(jì)選擇的建議。這些建議基于直流和非同步交流電機(jī)的常見故障。這些常見故障可通過振動(dòng)分析檢測(cè)出來,包括機(jī)械和電氣故障。重點(diǎn)是傳感器的頻率范圍及其安裝方法,以便可靠地檢測(cè)這些故障。例如,考慮以幾百赫茲的周期性頻率(稱為故障頻率)發(fā)生的撞擊事件,但每個(gè)事件的能量可從起始點(diǎn)帶走,頻率在低至千赫范圍內(nèi)。因此,用于檢測(cè)撞擊、摩擦和凹槽等事件的傳感器應(yīng)在幾百赫茲到20千赫的寬頻范圍內(nèi)響應(yīng)。對(duì)于傳統(tǒng)的機(jī)械故障,如平衡和對(duì)準(zhǔn),頻率范圍從約0.2倍的運(yùn)行速度到50-60倍的運(yùn)行速度是足夠的。電氣故障需要機(jī)械故障所需的低頻和高頻段。 電機(jī)會(huì)同時(shí)出現(xiàn)機(jī)械和電氣故障,這會(huì)導(dǎo)致振動(dòng)...
遠(yuǎn)程終端廣泛應(yīng)用于工業(yè)互聯(lián)網(wǎng)、分布式數(shù)據(jù)采集、設(shè)備狀態(tài)的在線監(jiān)測(cè),能夠進(jìn)行前端數(shù)據(jù)清洗和邊緣計(jì)算,通過對(duì)歷史數(shù)據(jù)趨勢(shì)分析、設(shè)備數(shù)據(jù)機(jī)理分析、統(tǒng)計(jì)分析等大數(shù)據(jù)分析,對(duì)設(shè)備的狀態(tài)做出有效可靠的健康狀態(tài)評(píng)判,從而切實(shí)有效的提高設(shè)備的維護(hù)能力。遠(yuǎn)程終端可實(shí)現(xiàn)對(duì)電源電壓、設(shè)備狀態(tài)的自檢,分析計(jì)量故障等信息,及時(shí)發(fā)現(xiàn)計(jì)量異?!,F(xiàn)場(chǎng)監(jiān)測(cè)箱開門、斷電、設(shè)備運(yùn)行等異常信息也能夠主動(dòng)發(fā)送報(bào)警信息到監(jiān)測(cè)中心,實(shí)現(xiàn)設(shè)備在線監(jiān)診的準(zhǔn)確性、完整性、及時(shí)性和可靠性。對(duì)大中型電動(dòng)機(jī)狀態(tài)監(jiān)測(cè),及時(shí)了解它們的工作狀態(tài),合理地安排檢修,能夠較好地保證電動(dòng)機(jī)的平穩(wěn)運(yùn)行。杭州電機(jī)監(jiān)測(cè)控制策略基于交流電機(jī)的特征量:通過故障機(jī)理分析可知,...
深度學(xué)習(xí)技術(shù)已在滾動(dòng)軸承故障監(jiān)測(cè)和診斷領(lǐng)域取得了成功應(yīng)用, 但面對(duì)不停機(jī)情況下的早期故障在線監(jiān)測(cè)問題, 仍存在著早期故障特征表示不充分、誤報(bào)警率高等不足. 為解決上述問題, 本文從時(shí)序異常檢測(cè)的角度出發(fā), 提出了一種基于深度遷移學(xué)習(xí)的早期故障在線檢測(cè)方法. 首先, 提出一種面向多域遷移的深度自編碼網(wǎng)絡(luò), 通過構(gòu)建具有改進(jìn)的比較大均值差異正則項(xiàng)和Laplace正則項(xiàng)的損失函數(shù), 在自適應(yīng)提取不同域數(shù)據(jù)的公共特征表示同時(shí), 提高正常狀態(tài)和早期故障狀態(tài)之間特征的差異性; 基于該特征表示, 提出一種基于時(shí)序異常模式的在線檢測(cè)模型, 利用離線軸承正常狀態(tài)的排列熵值構(gòu)建報(bào)警閾值, 實(shí)現(xiàn)在線數(shù)據(jù)中異常序列的...