由于高頻大功率電力電子設備應用的增加,這些設備中可能會產生交直流復合的復雜電流波形,包含直流、低頻交流和高達幾十千赫茲以上的高頻成分。高頻電力電子系統(tǒng)的實現(xiàn)依賴于整流、逆變、濾波等環(huán)節(jié),逆變器的作用在系統(tǒng)中尤其重要。逆變器的拓撲結構有以下幾種形式:帶工頻變壓器的逆變器、帶高頻變壓器的逆變器和無變壓器的逆變器三種基本形式。將隔離變壓器置于逆變器和輸入電路之間,可實現(xiàn)前后級電路的電氣隔離,防止直流電流分量注入到后級電路中。但是這樣會造成變壓器本身損耗增大,效率明顯降低,而且由于變壓器的加入提高了系統(tǒng)整體成本,增大了電路體積。無變壓器型逆變器則由于其成本較帶變壓器型明顯降低,效率得到提高而越來越受到...
t7時刻起鐵芯C1工作點回移至線性區(qū)A,非線性電感L仍繼續(xù)充電,此時激磁感抗ZL較大,激磁電流iex緩慢由I-th繼續(xù)增大,直至在t8時刻增大為0。t5~t8期間,構成了激磁電流iex的負半周波TN。至此0~t8期間構成了RL自激振蕩電路一個完整的周波,通過上述分析可知,在一個完整的振蕩周期內,激磁鐵芯C1工作點在線性區(qū)A、正向飽和區(qū)B及負向飽和區(qū)C之間,由A→B→A→C→A來回振蕩。就物理本質而言,磁通門傳感器正是利用磁性材料非線性的特點,完成了自激振蕩的起振過程[16]。這同時也表明,在使用自激振蕩磁通門傳感器時,需要滿足正負大充電電流Im大于鐵芯C1激磁電流閾值Ith的約束條件,即自激振...
磁通門電流傳感器是一種基于磁調制原理的高精度電流傳感器,具有以下優(yōu)點: 高精度測量:磁通門電流傳感器能夠準確測量直流、交流和脈沖等復雜信號的電流值,測量范圍寬,精度高,過載能力強。 快速響應:磁通門電流傳感器具有快速的響應時間,能夠及時響應并測量電流的變化。 寬電流測量范圍:磁通門電流傳感器的測量范圍較寬,可以適應不同電流值的測量需求。 抗干擾能力強:磁通門電流傳感器具有抗電磁干擾的能力,能夠在復雜的環(huán)境中穩(wěn)定工作。 線性好:磁通門電流傳感器的輸出信號與輸入電流成線性關系,方便進行信號處理和計算。為保證磁通門能夠處于零磁通狀態(tài),磁通門電路常應用閉環(huán)系統(tǒng)。濟南動力電池測試電流傳感器發(fā)展現(xiàn)狀零磁...
其中一次繞組 WP 中流過一次電流為 IP ,匝數(shù)為 NP 。一次電流繞組穿過環(huán)形鐵芯 C1 及 C2 的中心,鐵芯 C1 上均勻繞制有匝數(shù)為 N1 的激磁繞組 W1 ,鐵芯 C2 上均勻繞制 有匝數(shù)為 N2 的激磁繞組 W2 。同時環(huán)形鐵芯 C1 及 C2 上同時均勻纏繞有匝數(shù)為 NF 的反 饋繞組 WF 。反饋繞組 WF 中串接終端測量電阻 RM 。其中新型交直流電流傳感器的電流 檢測模塊即零磁通交直流檢測器包括環(huán)形鐵芯C1 和C2、比較放大器U1、反向放大器U2 、 采樣電阻 RS1 、分壓電阻 R1 和 R2 。低通濾波器 LPF 及高通濾波器 HPF 構成新型交直流 電流傳感器...
激磁電壓信號Vex在一個周波內表達式為:(|Vout,0
無錫納吉伏研制的新型交直流測量傳感器包括電流檢測、信號解調、誤差控制、電流反饋等多個模塊,可建立基于各模塊的系統(tǒng)誤差模型和誤差傳遞函數(shù),為各個模塊參數(shù)優(yōu)化設計及進一步減小系統(tǒng)穩(wěn)態(tài)測量誤差提供理論依據。首先對各模塊進行數(shù)學建模,其中電流檢測模塊包含兩個非線性環(huán)形鐵芯,環(huán)形鐵芯C1與C2始終工作在完全相反的激磁狀態(tài),而環(huán)形鐵芯C1與C2材料參數(shù)一致,電路參數(shù)也保持一致,若從系統(tǒng)的觀點將兩個鐵芯看做一個整體,當系統(tǒng)穩(wěn)定時雖然單個鐵芯的工作狀態(tài)相反,但整體上看兩者均工作在零磁通狀態(tài)下,也就是說當系統(tǒng)達到穩(wěn)態(tài),此時雖然鐵芯C1和C2分別都是非線性磁性元件,而整體上激磁磁通為0,整體可以看作工作在線性區(qū)的...
誤差控制電路由PI環(huán)節(jié)構成,其直流開環(huán)增益越大越好,同時要求所選擇運算放大器失調電壓小,單位增益帶寬大,選用OP27G高精密運放。誤差控制電路輸出直接連接PA功率放大電路,以驅動其輸出反饋電流IF。常見的功率放大電路包括集成功率放大電路以及三極管等功率器件搭建的A類,B類,AB類,D類,H類功率放大電路[9,50]。在基于磁通門原理的直流電流測量的類似方案中,為了通過降低功率放大電路的功耗以改善整個系統(tǒng)的運行功耗,D類功率放大電路,H類功率放大電路常有出現(xiàn),但該類功率放大電路輸出紋波較大,因此對反饋電流中交直流測量帶來誤差。為了減小功率放大電路環(huán)節(jié)的輸出紋波,本文選擇了傳統(tǒng)AB類功率放大電路,...
除了上述環(huán)節(jié),一次繞組WP由于電磁感應效應在反饋繞組WF上將產生感應電流,該過程輸入信號為一次電流IP,輸出信號為反饋繞組的激磁感抗jwLF上產生的感應電壓。根據上述關系及圖示電流參考方向,G5傳遞函數(shù)可表示為:G5=ZFNP=jwLFNP=jwμ0μeN2F(2Sc)NPNFNFlcNF此外系統(tǒng)的負反饋信號為反饋繞組WF在合成鐵芯C12中產生的反向磁勢,因此在圖3-2中負反饋環(huán)節(jié)傳遞函數(shù)直接用反饋繞組匝數(shù)NF表示。根據電流傳感器比例誤差ε定義及式(3-12)可得:ε=N(N)P(F)I(I)P(S)一IP=1+G(N)1G2G3G4(FG4G5一)N(1)F(3-18)將式(3-13)至(3...
當激磁電壓頻率遠大于被測工頻交流電流頻率即fex>>f 時, 每 個激磁電壓周波內可以將被測交直流電流看作近似直流分量通過式(2-39)表示。該方 法類似于對低頻交流分量, 通過高頻的激磁電壓進行調制。在每一個調制周期內, 自激 振蕩磁通門法都可以將被測電流的量值大小及方向, 準確反映在激磁電流波形中。不同 于直流測量時通過分析單個激磁電壓周期內激磁電流平均值即可獲取正比于直流分量 大小的電壓信號,當進行交流測量或交直流電流測量, 則需要分析大于或等于一個交流 信號周期的激磁電流信號獲取交流及交直流測量結果。只要磁芯磁導率隨激勵磁場強度變化,感應電勢中就會出現(xiàn)隨環(huán)境磁場強度變化的偶次諧波增量。...
高頻電力電子裝置無論是應用于工業(yè)礦產中的電動機車,在風機水泵的交流調速,還是新能源發(fā)電中的風電并網轉換技術以及對多余能量的存儲和使用等多個方面,都需要在復雜環(huán)境下對電流進行檢測,因此對電流傳感器的溫度特性及精確度的要求較高。隨著電力電子高頻化的進一步發(fā)展,可以在高溫環(huán)境下測量復雜電流波形的電流傳感器的研制具有很大的價值和應用潛力。目前存在的電流檢測技術和方法有很多,根據測量方法和方式的不同,電流傳感器可分為非隔離式與電隔離式兩種。非隔離式主要是指分流電阻。電隔離式主要包括 霍爾電流傳感器(Hall-transducer),羅氏線圈(Rogowski Coil),電流互感器(Current tr...
無錫納吉伏公司基于鐵磁材料的三折線分段線性化模型,對自激振蕩磁通門傳感器起振原理及數(shù)學模型進行推導,并探討了其在直流測量及交直流檢測的適應性,針對自激振蕩磁通門傳感器的各項性能指標,包括線性度、量程、靈敏度、帶寬、穩(wěn)定性等進行了較為深入的研究。(2)結合傳統(tǒng)電流比較儀閉環(huán)結構,設計了基于雙鐵芯結構自激振蕩磁通門傳感器的新型交直流電流傳感器,并對其解調電路進行相應改進。通過磁勢平衡方程及相關電路理論,分析了改進結構及解調電路對傳統(tǒng)單鐵芯自激振蕩磁通門傳感器線性度的影響。并通過構建新型交直流電流傳感器穩(wěn)態(tài)誤差數(shù)學模型,明確了交直流穩(wěn)態(tài)誤差與傳感器電路設計參數(shù)及雙鐵芯結構零磁通交直流檢測器之間的定性...
新型交直流傳感器的環(huán)節(jié)是零磁通交直流檢測器,其線性度制約了整體閉環(huán)測量方案的精度。本文設計的零磁通交直流檢測器如圖3-1所示。其包括環(huán)形鐵芯C1和C2,及激磁繞組W1,激磁繞組W2和分壓電阻R1,R2。比較放大器U1,單位反向放大器U2,采樣電阻RS1和RS2。首先確定磁芯尺寸及磁性材料選擇,磁性材料各項參數(shù)直接影響到所設計零磁通交直流檢測器的靈敏度,并對電路設計參數(shù)有所限制[57]。根據第2章分析可知,鐵芯材料需要選擇非線性程度高,即磁導率高,磁飽和強度高,矯頑力低的磁性材料。用于直流電流精密測量的直流比較儀結構以及交直流精密測量的交直流電流比較儀結構也是在此基礎上發(fā)展而來。南京功率分析儀電...
根據前述假設,Im<
探究了交直流電流測量方法的適應性并闡述自激振蕩磁通門傳感器適應 于交直流電流測量的獨特優(yōu)勢。其次,通過對自激振蕩磁通門電路起振過程的分析,并應用非線性鐵芯的三折線模型及電路理論,分析了基于自激振蕩磁通門傳感器的交直流測量原理, 在此基礎上探討了交直流電流下自激振蕩磁通門傳感器測量的適應性,為設計新型交直流電流傳感器奠定理論基礎。后討論了自激振蕩磁通門傳感器的關鍵特性:檢測帶寬、量程、線性度、靈敏度及穩(wěn)定性等,為新型交直流電流傳感器的設計提供理論依據。電流傳感器探頭的參數(shù)不對稱會增大探頭的噪聲、降低探頭的穩(wěn)定性和靈敏度。蘇州電池包電流傳感器單價基于自激振蕩磁通門技術和傳統(tǒng)電流比較儀結構,通過改...
無錫納吉伏研制的新型交直流測量傳感器包括電流檢測、信號解調、誤差控制、電流反饋等多個模塊,可建立基于各模塊的系統(tǒng)誤差模型和誤差傳遞函數(shù),為各個模塊參數(shù)優(yōu)化設計及進一步減小系統(tǒng)穩(wěn)態(tài)測量誤差提供理論依據。首先對各模塊進行數(shù)學建模,其中電流檢測模塊包含兩個非線性環(huán)形鐵芯,環(huán)形鐵芯C1與C2始終工作在完全相反的激磁狀態(tài),而環(huán)形鐵芯C1與C2材料參數(shù)一致,電路參數(shù)也保持一致,若從系統(tǒng)的觀點將兩個鐵芯看做一個整體,當系統(tǒng)穩(wěn)定時雖然單個鐵芯的工作狀態(tài)相反,但整體上看兩者均工作在零磁通狀態(tài)下,也就是說當系統(tǒng)達到穩(wěn)態(tài),此時雖然鐵芯C1和C2分別都是非線性磁性元件,而整體上激磁磁通為0,整體可以看作工作在線性區(qū)的...
動力電池化成分容設備是電池生產過程中重要的自動化設備,它可以對電池進行充電、放電、分揀等功能,提高生產效率和精度。電流傳感器在化成分容設備上的應用是非常關鍵的,它可以幫助實現(xiàn)以下幾個方面的控制和保護: 鋰電池的充放電控制:通過電流傳感器可以實時監(jiān)測電池的充電和放電狀態(tài),控制充電和放電的電流和電壓,確保電池的正常充放電,避免過充或過放。 鋰電池的過壓保護:當電池電壓超過設定值時,電流傳感器可以觸發(fā)保護機制,切斷充電電源,防止電池過壓損壞。 鋰電池的過流保護:當電池電流超過設定值時,電流傳感器可以觸發(fā)保護機制,切斷放電電路,防止電池過流損壞。在電動汽車中,電流測量可以幫助駕駛員了解電池的充電狀態(tài)...
鐵芯 C1 的非線性是影響自激振蕩磁通門電路正常運行的主要因素。在探究鐵芯 C1 非線性特性時常用簡易的三折線模型分析,三折線模型忽略了鐵芯 C1 磁滯效應并對復 雜的磁化曲線進行分段線性化,鐵芯 C1 磁化曲線及簡化模型見圖 2-2。圖中主要參數(shù) HC 為鐵芯 C1 剩磁,H(ith)為鐵芯 C1 磁導率由線性區(qū)即將進入非線性區(qū)發(fā)生突變時對應 激磁電流閾值 ith 下的磁場強度,H(is)為鐵芯 C1 進入飽和區(qū)工作狀態(tài)時對應飽和激磁電 流 is 下的磁場強度。鐵芯 C1 的工作狀態(tài)依據激磁電流大小被劃分為負 向飽和區(qū) C,線性區(qū) A 及正向飽和區(qū) B。電流測量是電氣測量中的基本而重要的方...
實際自激振蕩磁通門傳感器基于 RL自激振蕩電路完成對被測電流信號的磁調制過 程,其中使用比較器電路正反饋模式配合非線性電感完成自激振蕩過程。 C1 為高磁導率、低磁飽和強度的非線性鐵磁材料,其上均勻 繞制匝數(shù)為 N1 的激磁繞組 W1,共同構成重要器件非線性電感 L,其繞線電阻為 RC 。分 壓電阻 R1 、R2 用于設置比較器正向閾值比較電壓 V+和反向閾值比較電壓 V- 。采樣電阻 RS 用于激磁電流信號 iex 采樣。同時在 RL 自激振蕩電路輸出端并聯(lián)反向串聯(lián)的穩(wěn)壓二 極管 DZ1 與 DZ2 完成激勵電壓峰值 Vex 的設置。WP 為一次繞組,其上一次電流大小為 IP??闺姶鸥蓴_:...
直流特性測試實驗參考《測量用電流互感器檢定規(guī)程》,依據圖 5-1 所示實驗方案 進行新型交直流傳感器直流性能測試[62]。直流特性測試過程中,由于直流電流源輸出直流電流為 10 A,因此采用等安匝方法施加直流電流。實驗時, 升流器輸出交流為 0 , 一次交流回路斷開,且受傳感器內徑尺寸及直流繞組匝數(shù)限制, 直流電流測量上限只是為 300A ,在 0~300A 直流電流范圍內。橫坐標為等效一次標準直流值大小,縱坐標為 0~300A 范圍內新型交直流 電流傳感器直流比例誤差。其中紅色曲線為 0.05 級直流電流互感器比例誤差限值曲線, 黑色曲線為正行程直流比例誤差曲線, 藍色曲線為反行程直流比例誤...
磁通門探頭的磁通變化由激勵電流以及初級被測電流的共同變化得出,引入了閉環(huán)結構,由于被測初級電流上的存在引起電感值變化,應用閉環(huán)原理進行檢測以及補償,補償電流Zs輸入到傳感器的次級線圈中,使得開口處場強為0,電感返回至一個參考值。初級電流和次級電流的關系就會由匝數(shù)比很明確的給出來。無錫納吉伏提出了一種緊湊式結構的磁通門傳感器,該結構減少了一個磁芯, 應用套環(huán)式雙磁芯,內部環(huán)形磁芯及纏繞在其上的反饋以及激勵線圈與初級線圈應用積分反饋式磁通門電流傳感器測量方式。外部環(huán)繞著反饋線圈的環(huán)形磁芯與初級線圈構成電流互感器用以測量高頻交流電。這一結構的提出進一步減小了測量探頭的體積及功耗。但是卻是以付出精確度...
巨磁阻(GMR)效應在微小磁場測量領域實現(xiàn)了創(chuàng)新性的改變,尤其在利用渦流傳感器進行無損檢測方面取得了很大的進展。巨磁阻傳感器具有低功耗、尺寸小、高靈敏度以及頻率與靈敏度的不相關性等特點;同霍爾傳感器相同,巨磁阻芯片是傳感器的主要組成部分,一般也容易受到環(huán)境中磁場的干擾,不適用于電磁環(huán)境復雜的環(huán)境,對復雜波形電流也不能做出準確的檢測。磁通門傳感器(Fluxgatecurrentsensor),一開始主要用于弱磁場的檢測,比如地磁場檢測、鐵礦石檢測、位移檢測和管道泄漏檢測等方面。隨著這種技術的發(fā)展,磁通-2-門傳感器廣泛應用于太空探測和地質勘探中。磁通門電流傳感器的結構類似霍爾電流傳感器,是基于檢...
傳統(tǒng)的電流互感器或交流比較儀,當一次電流為交直流混合電流時,一次電流中的 直流分量并不適用于電磁感應原理, 因此全部的直流分量用于鐵芯勵磁,致使鐵芯進入 飽和區(qū), 此時電流互感器二次側電流出現(xiàn)畸變, 導致一二次安匝失去平衡,交流誤差顯 著增大。非線性鐵芯材料在直流分量下均會產生磁飽和問題,為了實現(xiàn)交直流電流 測量, 需對一次電流中直流分量在鐵芯中產生的直流磁勢進行補償, 平衡鐵芯中直流磁 勢使鐵芯磁飽和問題得到解決, 此時交流比較儀部分可實現(xiàn)交流精密測量[38] 。因此,實 現(xiàn)交直流電流精密測量的關鍵就是構建一二次交直流磁勢平衡,通過磁勢閉環(huán)實現(xiàn)主鐵 芯零磁通工作狀態(tài)。而傳統(tǒng)自激...
傳統(tǒng)電能計量領域對于電流的精密測量或電流傳感器校驗往往通過電流比較儀的方式實現(xiàn)。傳統(tǒng)的交流比較儀通過增加勵磁電流補償模塊,降低互感器正常工作下勵磁電流的大小,使得主鐵芯工作在微磁通或零磁通狀態(tài)從而降低電流測量的比例誤差和相位誤差,然而傳統(tǒng)的帶鐵芯交流比較儀在直流分量下會出現(xiàn)磁飽和問題,勵磁電流補償模塊無法完成直流勵磁的補償,因此傳統(tǒng)的交流比較儀方法無法完成交直流同時測量。傳統(tǒng)的直流比較儀基于磁調制器原理,鐵芯采用雙鐵芯差動式結構,通過外接激磁電源,調整合適的激磁電流及頻率大小,在檢測繞組端,通過檢測二次諧波電壓的大磁通門電流傳感器也可以用于測量直流電流,例如在電池充電和放電過程中,可以監(jiān)測電池...
當激磁電壓頻率遠大于被測工頻交流電流頻率即fex>>f 時, 每 個激磁電壓周波內可以將被測交直流電流看作近似直流分量通過式(2-39)表示。該方 法類似于對低頻交流分量, 通過高頻的激磁電壓進行調制。在每一個調制周期內, 自激 振蕩磁通門法都可以將被測電流的量值大小及方向, 準確反映在激磁電流波形中。不同 于直流測量時通過分析單個激磁電壓周期內激磁電流平均值即可獲取正比于直流分量 大小的電壓信號,當進行交流測量或交直流電流測量, 則需要分析大于或等于一個交流 信號周期的激磁電流信號獲取交流及交直流測量結果。平行型磁通門電流傳感器的特征為:被測磁場與激勵磁場方向平行。粒子加速器電流傳感器服務電...
Ve為合成電壓信號VR12經低通濾波后的誤差電壓信號。設計電路參數(shù)R1=R2,R4=R5。Q1為NPN型功率放大三極管,型號為TIP110,Q2為PNP型功率放大三極管,型號為TIP117。AB類功率放大輸出端串接反饋繞組WF及終端測量電阻RM形成反饋閉環(huán)。反饋繞組匝數(shù)NF直接影響新型交直流傳感器的比例系數(shù),NF越大,交直流電流傳感器靈敏度越低,線性區(qū)量程也越大,另外PA功率放大電路的輸出電流能力也制約了反饋繞組匝數(shù)NF不能設計過小,但反饋繞組匝數(shù)NF過大,其漏感也越大,分布電容參數(shù)越大,系統(tǒng)磁性及容性誤差將會增大。因此需要綜合考慮靈敏度、功放帶載能力及量程等要求,所設計反饋繞組匝數(shù)NF=10...
磁場的測量按照被檢測磁場的強弱可以分為弱磁場、強磁場和甚強磁場,每一種強度的磁場測量方法和手段都所有不同,而弱磁場的測量水平往往表示著磁場測量的研究水平。弱磁場的測量在人們生活中也越來越重要,在醫(yī)院、在實驗室、在空間飛船等領域越來越受關注,弱磁場的測量水平對國家安防建設、國家發(fā)展有著重要的意義。隨著科技的發(fā)展測量技術不斷進步,向著高精度、高靈敏度、小型化發(fā)展。磁場的精確測量越來越重要,所涉及的領域也越來越廣,很多適應需求的高靈敏度磁傳感器相繼問世。激磁電壓頻率大于一次交流頻率,因此可以將一次交流在每個極短的激磁電壓周期內,看作緩慢變化的直流信號。金華新能源汽車電流傳感器聯(lián)系方式分流器:分流器是...
電流的精密測量一直是工業(yè)生產制造和計量科學理論的重要課題。近些年來,伴隨著智能電網的快速建設及交直流混合配電網的不斷發(fā)展,配網中交直流混合電網的建設規(guī)模及復雜度均有增加。由于交直流配網的發(fā)展以及整流型用電負荷的增多,例如電氣化鐵路、大型整流硅設備及煉鋼、煉鋁、塑料制品廠商的增多,使得交流電網中存在直流分量。直流分量的存在,使得配網中現(xiàn)有的交流檢測設備產生了誤差增大、計量失準、保護誤動等多種問題,變壓器等設備在直流分量下輸出電壓畸變。在電力系統(tǒng)中,電流測量對于確保電力系統(tǒng)的穩(wěn)定運行至關重要。溫州高線性度電流傳感器供應商傳統(tǒng)電能計量領域對于電流的精密測量或電流傳感器校驗往往通過電流比較儀的方式實現(xiàn)...
t5時刻起鐵芯C1工作點進入負向飽和區(qū)C,此時激磁感抗ZL迅速變小,因此t5~t6期間,激磁電流iex迅速反向增大,當激磁電流iex達到反向充電電流-I-m=ρVOH/RS時,電路環(huán)路增益|ρAv|>>1滿足振蕩電路起振條件,方波激磁電壓發(fā)生反轉,輸出電壓由反向峰值電壓VOL變?yōu)檎蚍逯惦妷篤OH。即t6時刻,VO=VOH。t6時刻起鐵芯C1工作點由負向飽和區(qū)C開始向線性區(qū)A移動,在t6~t7期間,鐵芯C1仍工作于負向飽和區(qū)C,激磁感抗ZL變小,而輸出方波電壓變?yōu)檎虼藭r加在非線性電感L上反向端電壓V-=-ρVOH,產生的充電電流為正向,與激磁電流iex方向相反,12因此非線性電感L開始正向充...
諧波成分測試:逆變器產生的諧波可能會對電力系統(tǒng)產生負面影響,包括干擾設備正常運行和導致能源浪費。對諧波成分的測量可以幫助確保逆變器的性能符合標準。 總諧波失真測試:這是評估逆變器產生諧波的程度的一種方法,可以反映逆變器的質量。低總諧波失真意味著逆變器產生的諧波對電力系統(tǒng)的影響較小。 在進行這些測試時,需要使用高精度的大電流傳感器和功率分析儀來獲取準確的測量結果。例如,文中提到的無錫納吉伏研發(fā)的10PPM高精度大電流傳感器,可以解決大電流高精度的測試難題,保證測試的穩(wěn)定性和準確性。這些設備的使用可以提高測試效率,降低成本,并確保光伏逆變器在出廠前達到高質量標準。激磁電壓頻率大于一次交流頻率,因此...
實際電源系統(tǒng)中有些電流的形式比較復雜,由于電源系統(tǒng)中的負載特性的變化,可能會引起電流的波形的變化。復雜電流波形可以看成多個不同頻率的電流疊加而成的。常見的復雜電流有交流電流疊加一個脈動的直流電流、直流電流疊加脈沖電流和電源中的負載電流等。復雜的電流波形可以經過傅里葉分解,對各個頻率的分量進行的分別測量。進行疊加的各個分量具有不同的頻率,電流形式上為復雜波形,也就是說電流具有較寬的頻帶。為了精確測量具有寬頻帶的電流,就需要設計寬頻帶的電流傳感器。磁通門電流傳感器可以用于監(jiān)測電池的電量和電流,提高電池的使用效率和安全性。金華新能源汽車電流傳感器報價同理,雙鐵芯結構下,由于反饋繞組同時均勻繞制在兩環(huán)...