縱觀納米測量技術(shù)發(fā)展的歷程,它的研究主要向兩個方向發(fā)展:一是在傳統(tǒng)的測量方法基礎上,應用先進的測試儀器解決應用物理和微細加工中的納米測量問題,分析各種測試技術(shù),提出改進的措施或新的測試方法;二是發(fā)展建立在新概念基礎上的測量技術(shù),利用微觀物理、量子物理中較新的研究成果,將其應用于測量系統(tǒng)中,它將成為未來納米測量的發(fā)展趨向。但納米測量中也存在一些問題限制了它的發(fā)展。建立相應的納米測量環(huán)境一直是實現(xiàn)納米測量亟待解決的問題之一,而且在不同的測量方法中需要的納米測量環(huán)境也是不同的。對納米材料和納米器件的研究和發(fā)展來說,表征和檢測起著至關(guān)重要的作用。由于人們對納米材料和器件的許多基本特征、結(jié)構(gòu)和相互作用了解得還不很充分,使其在設計和制造中存在許多的盲目性,現(xiàn)有的測量表征技術(shù)就存在著許多問題。此外,由于納米材料和器件的特征長度很小,測量時產(chǎn)生很大擾動,以至產(chǎn)生的信息并不能完全表示其本身特性。這些都是限制納米測量技術(shù)通用化和應用化的瓶頸,因此,納米尺度下的測量無論是在理論上,還是在技術(shù)和設備上都需要深入研究和發(fā)展。納米力學測試可以解決納米材料在制備和應用過程中的力學問題,提高納米材料的性能和穩(wěn)定性。納米力學動態(tài)測試廠家供應
國內(nèi)的江西省科學院、清華大學、南昌大學等采用掃描探針顯微鏡系列,如掃描隧道顯微鏡、原子力顯微鏡等,對高精度納米和亞納米量級的光學超光滑表面的粗糙度和微輪廓進行測量研究。天津大學劉安偉等在量子隧道效應的基礎上,建立了適用于平坦表面的掃描隧道顯微鏡微輪廓測量的數(shù)學模型,仿真結(jié)果較好地反映了掃描隧道顯微鏡對樣品表面輪廓的測量過程。清華大學李達成等研制成功在線測量超光滑表面粗糙度的激光外差干涉儀,該儀器以穩(wěn)頻半導體激光器作為光源,共光路設計提高了抗外界環(huán)境干擾的能力,其縱向和橫向分辨率分別為0.39nm和0.73μm。李巖等提出了一種基于頻率分裂激光器光強差法的納米測量原理。湖南高精度納米力學測試原理納米力學測試結(jié)果有助于優(yōu)化材料設計,提升產(chǎn)品性能,降低生產(chǎn)成本。
Berkovich壓頭是納米壓痕硬度計中較常用的。它可以加工得很尖,而且?guī)缀涡螤钤诤苄〕叨葍?nèi)保持自相似,適合于小尺度的壓痕實驗。目前,該類壓頭的加工水平:端部半徑50nm,典型值約40nm,中心線和面的夾角精度為J=0.025°。在納米壓痕硬度測量中,Berkovich壓頭是一種理想的壓頭。優(yōu)點包括:易獲得好的加工質(zhì)量,很小載荷就能產(chǎn)生塑性,能減小摩擦的影響。Cube-corner壓頭因其三個面相互垂直,像立方體的一個角,故取此名稱。壓頭越尖,就會在接觸區(qū)內(nèi)產(chǎn)生理想的應力和應變。目前,該種壓頭主要用于斷裂韌性(fracture toughness)的研究。它能在脆性材料的壓痕周圍產(chǎn)生很小的規(guī)則裂紋,這樣的裂紋能在相當小的范圍內(nèi)用來估計斷裂韌性。錐形壓頭圓錐具有尖的自相似幾何形狀,從模型角度常利用它的軸對稱特性,納米壓痕硬度的許多模型均基于圓錐壓痕。由于難以加工出尖的圓錐金剛石壓頭,它在小尺度實驗中很少使用。
本文中主要對當今幾種主要材料納觀力學與納米材料力學特性測試方法:納米硬度技術(shù)、納米云紋技術(shù)、掃描力顯微鏡技術(shù)等進行概述。納米硬度技術(shù)。隨著現(xiàn)代材料表面工程、微電子、集成微光機電 系統(tǒng)、生物和醫(yī)學材料的發(fā)展試樣本身或表面改性層厚度越來越小。傳統(tǒng)的硬度測量已無法滿足新材料研究的需要,于是納米硬度技術(shù)應運而生。納米硬度計是納米硬度測量的主要儀器,它是一種檢測材料微小體積內(nèi)力學性能的測試儀器,包括壓痕硬度和劃痕硬度兩種工作模式。由于壓痕或劃痕深度一般控制在微米甚至納米尺度,因此該類儀器已成為電子薄膜、涂層、材料表面及其改性的力學性能檢測的理想手段。它不需要將表層從基體上剝離,便可直接給出材料表層力學性質(zhì)的空間分布。納米力學測試技術(shù)的發(fā)展離不開多學科交叉融合和創(chuàng)新研究團隊的共同努力。
即使源電阻大幅降低至1MW,對一個1mV的信號的測量也接近了理論極限,因此要使用一個普通的數(shù)字多用表(DMM)進行測量將變得十分困難。除了電壓或電流靈敏度不夠高之外,許多DMM在測量電壓時的輸入偏移電流很高,而相對于那些納米技術(shù)[3]常常需要的、靈敏度更高的低電平DC測量儀器而言,DMM的輸入電阻又過低。這些特點增加了測量的噪聲,給電路帶來不必要的干擾,從而造成測量的誤差。系統(tǒng)搭建完畢后,必須對其性能進行校驗,而且消除潛在的誤差源。誤差的來源可以包括電纜、連接線、探針[5]、沾污和熱量。下面的章節(jié)中將對降低這些誤差的一些途徑進行探討。納米力學測試可以幫助研究人員了解納米材料的變形和斷裂機制,為納米材料的設計和優(yōu)化提供指導。湖北國產(chǎn)納米力學測試系統(tǒng)
納米力學測試應用于半導體、生物醫(yī)學、能源等多個領域,具有普遍前景。納米力學動態(tài)測試廠家供應
量子效應決定物理系統(tǒng)內(nèi)個別原子間的相互作用力。在納米力學中用一些原子間勢能的平均數(shù)學模型引入量子效應。在經(jīng)典多體動力學內(nèi)加入原子間勢能提供了納米結(jié)構(gòu)和原子尺寸決定性的力學模型。數(shù)據(jù)方法求解這些模型稱為分子動力學(MD),有時稱為分子力學。非決定性數(shù)字近似包括蒙特卡羅,動力蒙卡羅和其它方法?,F(xiàn)代的數(shù)字工具也包括交叉通用近似,允許同時和連續(xù)利用原子尺寸的模型。發(fā)展這些復雜的模型是另一應用力學的研究課題。納米力學動態(tài)測試廠家供應