AFAM 的基本原理是利用探針與樣品的接觸振動(dòng)來對(duì)材料納米尺度的彈性性能進(jìn)行成像或測(cè)量。AFAM 于20 世紀(jì)90 年代中期由德國薩爾布呂肯無損檢測(cè)研究所的Rabe 博士(女) 首先提出,較初為單點(diǎn)測(cè)量模式。2000 年前后,她們采用逐點(diǎn)掃頻的方式實(shí)現(xiàn)了模量成像功能,但是成像的速度很慢,一幅128×128 像素的圖像需要大約30min,導(dǎo)致圖像的熱漂移比較嚴(yán)重。2005 年,美國國家標(biāo)準(zhǔn)局的Hurley 博士(女) 采用DSP 電路控制掃頻和探針的移動(dòng),將成像速度提高了4~5倍(一幅256×256 像素的圖像需要大約25min)。納米機(jī)器人研發(fā)中,力學(xué)性能測(cè)試至關(guān)重要,以確保其在復(fù)雜環(huán)境中的穩(wěn)定性。深圳微電子納米力學(xué)測(cè)試儀
有限元數(shù)值分析方面,Hurley 等分別基于解析模型和有限元模型兩種數(shù)據(jù)分析方法測(cè)量了鈮薄膜的壓入模量,并進(jìn)行了對(duì)比。Espinoza-Beltran 等考慮探針微懸臂的傾角、針尖高度、梯形橫截面、材料各向異性等的影響,給出了一種將實(shí)驗(yàn)測(cè)試和有限元優(yōu)化分析相結(jié)合,確定針尖樣品面外和面內(nèi)接觸剛度的方法。有限元分析方法綜合考慮了實(shí)際情況中的多種影響因素,精度相對(duì)較高。Kopycinska-Muller 等研究了AFAM 測(cè)試過程中針尖樣品微納米尺度下的接觸力學(xué)行為。Killgore 等提出了一種通過檢測(cè)探針接觸共振頻率變化對(duì)針尖磨損進(jìn)行連續(xù)測(cè)量的方法。核工業(yè)納米力學(xué)測(cè)試方法在醫(yī)學(xué)領(lǐng)域,納米力學(xué)測(cè)試可用于研究細(xì)胞和組織的力學(xué)性質(zhì)。
AFAM 方法提出之后,不少研究者對(duì)方法的準(zhǔn)確度和靈敏度方面進(jìn)行了研究。Hurley 等分析了空氣濕度對(duì)AFAM 定量化測(cè)量結(jié)果的影響。Rabe 等分析了探針基片對(duì)AFAM 定量化測(cè)量的影響。Hurley 等詳細(xì)對(duì)比了AFAM 單點(diǎn)測(cè)試與納米壓痕以及聲表面波譜方法的測(cè)試原理、空間分辨率、適用性及測(cè)試優(yōu)缺點(diǎn)等。Stan 等提出一種雙參考材料的方法,此方法不需要了解針尖的力學(xué)性能,可以在一定程度上提高測(cè)試的準(zhǔn)確度。他們還提出了一種基于多峰接觸的接觸力學(xué)模型,在一定程度上可以提高測(cè)試的準(zhǔn)確度。Turner 等通過嚴(yán)格的理論推導(dǎo)研究了探針不同階彎曲振動(dòng)和扭轉(zhuǎn)振動(dòng)模態(tài)的靈敏度問題。Muraoka提出一種在探針微懸臂末端附加集中質(zhì)量的方法,以提高測(cè)試靈敏度。Rupp 等對(duì)AFAM測(cè)試過程中針尖樣品之間的非線性相互作用進(jìn)行了研究。
納米硬度計(jì)主要由移動(dòng)線圈、加載單元、金剛石壓頭和控制單元4部分組成。壓頭及其所在軸的運(yùn)動(dòng)由移動(dòng)線圈控制,改變線圈電流的大小即可實(shí)現(xiàn)壓頭的軸向位移,帶動(dòng)壓頭垂直壓向試件表面,在試件表面產(chǎn)生壓力。移動(dòng)線圈設(shè)計(jì)的關(guān)鍵在于既要滿足較大量程的需要,還必須有很高的分辨率,以實(shí)現(xiàn)納米級(jí)的位移和精確測(cè)量。壓頭載荷的測(cè)量和控制是通過應(yīng)變儀來實(shí)現(xiàn)的。應(yīng)變儀發(fā)出的信號(hào)再反饋到移動(dòng)線圈上.如此可進(jìn)行閉環(huán)控制,以實(shí)現(xiàn)限定載荷和壓深痕實(shí)驗(yàn)。整個(gè)壓入過程完全由微機(jī)自動(dòng)控制進(jìn)行。可在線測(cè)量位移與相應(yīng)的載荷,并建立兩者之間的關(guān)系壓頭大多為金剛石壓頭,常用的壓頭有Berkovich壓頭、Cube Corner壓頭和Conical壓頭。碳納米管、石墨烯等納米材料,因獨(dú)特力學(xué)性能,備受關(guān)注。
納米壓痕儀簡(jiǎn)介,近年來,國內(nèi)外研究人員以納米壓痕技術(shù)為基礎(chǔ),開發(fā)出多種納米壓痕儀,并實(shí)現(xiàn)了商品化,為材料的納米力學(xué)性能檢測(cè)提供了高效、便捷的手段。圖片納米壓痕儀主要用于微納米尺度薄膜材料的硬度與楊氏模量測(cè)試,測(cè)試結(jié)果通過力與壓入深度的曲線計(jì)算得出,無需通過顯微鏡觀察壓痕面積。納米壓痕儀的基本組成可以分為控制系統(tǒng)、 移動(dòng)線圈系統(tǒng)、加載系統(tǒng)及壓頭等幾個(gè)部分。壓頭一般使用金剛石壓頭,分為三角錐或四棱錐等類型。試驗(yàn)時(shí),首先輸入初始參數(shù),之后的檢測(cè)過程則完全由微機(jī)自動(dòng)控制,通過改變移動(dòng)線圈系統(tǒng)中的電流,可以操縱加載系統(tǒng)和壓頭的動(dòng)作,壓頭壓入載荷的測(cè)量和控制通過應(yīng)變儀來完成,同時(shí)應(yīng)變儀還將信號(hào)反饋到移動(dòng)線圈系統(tǒng)以實(shí)現(xiàn)閉環(huán)控制,從而按照輸入?yún)?shù)的設(shè)置完成試驗(yàn)。納米力學(xué)測(cè)試可以應(yīng)用于納米材料的研究和開發(fā),以及納米器件的設(shè)計(jì)和制造。海南工業(yè)納米力學(xué)測(cè)試廠家
利用納米力學(xué)測(cè)試,可以評(píng)估納米材料的可靠性和耐久性。深圳微電子納米力學(xué)測(cè)試儀
AFAM 利用探針和樣品之間的接觸共振進(jìn)行測(cè)試,基于對(duì)探針的動(dòng)力學(xué)特性以及針尖樣品之間的接觸力學(xué)行為分析,可以通過對(duì)探針接觸共振頻率、品質(zhì)因子、振幅、相位等響應(yīng)信息的測(cè)量,實(shí)現(xiàn)被測(cè)樣品力學(xué)性能的定量化表征。AFAM 不只可以獲得樣品表面納米尺度的形貌特征,還可以測(cè)量樣品表面或亞表面的納米力學(xué)特性。AFAM 屬于近場(chǎng)聲學(xué)成像技術(shù),它克服了傳統(tǒng)聲學(xué)成像中聲波半波長對(duì)成像分辨率的限制,其分辨率取決于探針針尖與測(cè)試樣品之間的接觸半徑大小。AFM 探針的針尖半徑很小(5~50 nm),且施加在樣品上的作用力也很小(一般為幾納牛到幾微牛),因此AFAM 的空間分辨率極高,其橫向分辨率與普通AFM 一樣可以達(dá)到納米量級(jí)。與納米壓痕技術(shù)相比,AFAM 在分辨率方面具有明顯的優(yōu)勢(shì),通常認(rèn)為其測(cè)試過程是無損的。此外,AFAM 在成像質(zhì)量和速度方面均明顯優(yōu)于納米壓痕。目前,AFAM 已經(jīng)普遍應(yīng)用于納米復(fù)合材料、智能材料、生物材料、納米材料和薄膜系統(tǒng)等各種先進(jìn)材料領(lǐng)域。深圳微電子納米力學(xué)測(cè)試儀