當(dāng)前納米力學(xué)主要應(yīng)用的測(cè)試手段是納米壓痕和基于原子力顯微鏡(AFM) 的力—距離曲線方法,實(shí)際上還有另外一種基于AFM 的納米力學(xué)測(cè)試方法——掃描探針聲學(xué)顯微術(shù)(atomic force acoustic microscopy,AFAM)。AFAM具有分辨率高、成像速度快、相對(duì)誤差低、力學(xué)性能敏感度高等優(yōu)點(diǎn)。然而,目前AFAM 的應(yīng)用還不夠普遍,相關(guān)領(lǐng)域的學(xué)者對(duì)AFAM 了解和使用的還不多。為此,我們?cè)谇捌谘芯康幕A(chǔ)上,經(jīng)過(guò)整理和凝練,形成了這部專著,目的是推動(dòng)AFAM這種新型納米力學(xué)測(cè)量方法在國(guó)內(nèi)的普遍應(yīng)用。在生物醫(yī)學(xué)領(lǐng)域,納米力學(xué)測(cè)試有助于了解細(xì)胞與納米材料的相互作用機(jī)制。廣東半導(dǎo)體納米力學(xué)測(cè)試模塊
AFAM 方法較早是由德國(guó)佛羅恩霍夫無(wú)損檢測(cè)研究所Rabe 等在1994 年提出的。1996 年Rabe 等詳細(xì)分析了探針自由狀態(tài)以及針尖與樣品表面接觸情況下微懸臂的動(dòng)力學(xué)特性,建立了針尖與樣品接觸時(shí)共振頻率與接觸剛度之間的定量化關(guān)系。之后,他們還給出了考慮針尖與樣品側(cè)向接觸、針尖高度及微懸臂傾角影響的微懸臂振動(dòng)特征方程。他們?cè)谶@方面的主要工作奠定了AFAM 定量化測(cè)試的理論基礎(chǔ)。Reinstaedtler 等利用光學(xué)干涉法對(duì)探針懸臂梁的振動(dòng)模態(tài)進(jìn)行了測(cè)量。Turner 等采用解析方法和數(shù)值方法對(duì)比了針尖樣品之間分別存在線性和非線性相互作用時(shí),點(diǎn)質(zhì)量模型和Euler-Bernoulli 梁模型描述懸臂梁動(dòng)態(tài)特性的異同。海南微納米力學(xué)測(cè)試系統(tǒng)納米力學(xué)測(cè)試通常在真空或者液體環(huán)境下進(jìn)行,以保證測(cè)試的準(zhǔn)確性。
摘要 隨著科學(xué)技術(shù)的發(fā)展進(jìn)步,材料的研發(fā)和生產(chǎn)應(yīng)用進(jìn)入了微納米尺度,微納米材料憑借其出色的性能被人們普遍應(yīng)用于科研和生產(chǎn)生活的各方各面。與此同時(shí),人們正深入研究探索微納米尺度的材料力學(xué)性能參數(shù)測(cè)量技術(shù)方法,以滿足微納米材料的飛速發(fā)展和應(yīng)用需求。微納米力學(xué)測(cè)量技術(shù)的應(yīng)用背景,隨著材料的研發(fā)生產(chǎn)和應(yīng)用進(jìn)入微納米尺度,以往的通過(guò)宏觀的力學(xué)測(cè)量手段已不適用于測(cè)量微納米薄膜和器件的力學(xué)性能參數(shù)的測(cè)量。近年來(lái),微納米壓入和劃痕等力學(xué)測(cè)量手段隨著微納米材料的發(fā)展和應(yīng)用,在半導(dǎo)體薄膜和器件、功能薄膜、新能源材料、生物材料等領(lǐng)域應(yīng)用愈發(fā)普遍,因此亟待建立基于微納米尺度的材料力學(xué)性能參數(shù)測(cè)量的技術(shù)體系。
樣品制備,納米力學(xué)測(cè)試納米纖維的拉伸測(cè)試前需要復(fù)雜的樣品制備過(guò)程,因此FT-NMT03納米力學(xué)測(cè)試具備微納操作的功能,納米力學(xué)測(cè)試?yán)昧鞲形㈣嚮蛘呶⒘鞲衅骺梢詫?duì)單根納米纖維進(jìn)行五個(gè)自由度的拾取-放置操作(閉環(huán))??梢允褂镁劢闺x子束(FIB)沉積或電子束誘導(dǎo)沉積(EBID)對(duì)樣品進(jìn)行固定。納米力學(xué)測(cè)試這種結(jié)合了電-機(jī)械測(cè)量和納米加工的技術(shù)為大多數(shù)納米力學(xué)測(cè)試應(yīng)用提供了完美的解決方案。SEM/FIB集成,得益于FT-NMT03納米力學(xué)測(cè)試系統(tǒng)的緊湊尺寸(71×100×35mm),該系統(tǒng)可以與市面上絕大多數(shù)的全尺寸SEM/FIB結(jié)合使用,在樣品臺(tái)上安裝和拆卸該系統(tǒng)十分簡(jiǎn)便,只需幾分鐘。此外,由于FT-NMT03納米力學(xué)測(cè)試的獨(dú)特設(shè)計(jì)(無(wú)基座、開(kāi)放式),納米力學(xué)測(cè)試體系統(tǒng)可以和電子背向散射衍射儀(EBSD)和掃描透射電子顯微鏡(STEM)技術(shù)兼容。納米力學(xué)測(cè)試可以應(yīng)用于納米材料的力學(xué)模擬和仿真,加速納米材料的研發(fā)和應(yīng)用過(guò)程。
2005 年,中國(guó)科學(xué)院上海硅酸鹽研究所的曾華榮研究員在國(guó)內(nèi)率先單獨(dú)開(kāi)發(fā)出定頻成像模式的AFAM,但不能測(cè)量模量。隨后,同濟(jì)大學(xué)、北京工業(yè)大學(xué)等單位也對(duì)這種成像模式進(jìn)行了研究。2011 年初,我們研究組將雙頻共振追蹤技術(shù)用于AFAM,實(shí)現(xiàn)了快速的納米模量成像(一幅256×256 像素的圖像只需1~2min),并對(duì)其準(zhǔn)確度和靈敏度進(jìn)行了系統(tǒng)研究。較近幾年,AFAM 引起了越來(lái)越多國(guó)內(nèi)外學(xué)者的關(guān)注。然而,相對(duì)于其他AFM 模式,AFAM 的測(cè)量原理涉及梁振動(dòng)力學(xué)和接觸力學(xué),初學(xué)者不容易掌握。通過(guò)納米力學(xué)測(cè)試,我們可以評(píng)估納米材料在極端環(huán)境下的穩(wěn)定性和耐久性。高校納米力學(xué)測(cè)試供應(yīng)商
隨著納米技術(shù)的不斷發(fā)展,納米力學(xué)測(cè)試技術(shù)也在不斷更新?lián)Q代,以適應(yīng)更高精度的測(cè)試需求。廣東半導(dǎo)體納米力學(xué)測(cè)試模塊
掃描探針聲學(xué)顯微術(shù)一般適用于模量范圍在1~300 GPa 的材料。對(duì)于更軟的材料,在測(cè)試過(guò)程中接觸力有可能會(huì)對(duì)樣品造成損害?;谳p敲模式的原子力顯微鏡多頻成像技術(shù)是近年來(lái)發(fā)展的一項(xiàng)納米力學(xué)測(cè)試方法。通過(guò)同時(shí)激勵(lì)和檢測(cè)探針多個(gè)頻率的響應(yīng)或探針振動(dòng)的兩階(或多階) 模態(tài)或探針振動(dòng)的基頻和高次諧波成分等,可以實(shí)現(xiàn)對(duì)被測(cè)樣品形貌、彈性等性質(zhì)的快速測(cè)量。只要是涉及探針兩個(gè)及兩個(gè)以上頻率成分的激勵(lì)和檢測(cè),均可以歸為多頻成像技術(shù)。由于輕敲模式下針尖施加的作用力遠(yuǎn)小于接觸狀態(tài)下的作用力,因此基于輕敲模式的多頻成像技術(shù)適合于軟物質(zhì)力學(xué)性能的測(cè)量。廣東半導(dǎo)體納米力學(xué)測(cè)試模塊