根據(jù)以上分析可知,白光干涉時域解調(diào)方案的優(yōu)點是:①能夠?qū)崿F(xiàn)測量;②抗干擾能力強,系統(tǒng)的分辨率與光源輸出功率的波動,光源的波長漂移以及外界環(huán)境對光纖的擾動等因素?zé)o關(guān);③測量精度與零級干涉條紋的確定精度以及反射鏡的精度有關(guān);④結(jié)構(gòu)簡單,成本較低。但是,時域解調(diào)方法需要借助掃描部件移動干涉儀一端的反射鏡來進行相位補償,所以掃描裝置的分辨率將影響系統(tǒng)的精度。采用這種解調(diào)方案的測量分辨率一般是幾個微米,達到亞微米的分辨率,主要受機械掃描部件的分辨率和穩(wěn)定性限制。文獻[46]所報道的位移掃描的分辨率可以達到0.54μm。當(dāng)所測光程差較小時,F(xiàn)-P腔前后表面干涉峰值相距很近,難以區(qū)分,此時時域解調(diào)方案的應(yīng)用受到限制。白光干涉膜厚測量技術(shù)可以實現(xiàn)對薄膜的大范圍測量和分析。隨州怎樣選擇膜厚儀
白光干涉的相干原理早在1975年就已經(jīng)被提出,隨后于1976年在光纖通信領(lǐng)域中獲得了實現(xiàn)。1983年,BrianCulshaw的研究小組報道了白光干涉技術(shù)在光纖傳感領(lǐng)域中的應(yīng)用。隨后在1984年,報道了基于白光干涉原理的完整的位移傳感系統(tǒng)。該研究成果證明了白光干涉技術(shù)可以被用于測量能夠轉(zhuǎn)換成位移的物理參量。此后的幾年間,白光干涉應(yīng)用于溫度、壓力等的研究相繼被報道。自上世紀(jì)九十年代以來,白光干涉技術(shù)快速發(fā)展,提供了實現(xiàn)測量的更多的解決方案。近幾年以來,由于傳感器設(shè)計與研制的進步,信號處理新方案的提出,以及傳感器的多路復(fù)用[39]等技術(shù)的發(fā)展,使得白光干涉測量技術(shù)的發(fā)展更加迅速。順義區(qū)膜厚儀產(chǎn)品原理白光干涉膜厚測量技術(shù)可以實現(xiàn)對不同材料的薄膜進行測量。
為了分析白光反射光譜的測量范圍,開展了不同壁厚的靶丸殼層白光反射光譜測量實驗。圖是不同殼層厚度靶丸的白光反射光譜測量曲線,如圖所示,對于殼層厚度30μm的靶丸,其白光反射光譜各譜峰非常密集、干涉級次數(shù)值大;此外,由于靶丸殼層的吸收,壁厚較大的靶丸信號強度相對較弱。隨著靶丸殼層厚度的進一步增加,其白光反射光譜各譜峰將更加密集,難以實現(xiàn)對各干涉譜峰波長的測量。為實現(xiàn)較大厚度靶丸殼層厚度的白光反射光譜測量,需采用紅外的寬譜光源和光譜探測器。對于殼層厚度為μm的靶丸,測量的波峰相對較少,容易實現(xiàn)靶丸殼層白光反射光譜譜峰波長的準(zhǔn)確測量;隨著靶丸殼層厚度的進一步減小,兩干涉信號之間的光程差差異非常小,以至于他們的光譜信號中只有一個干涉波峰,基于峰值探測的白光反射光譜方法難以實現(xiàn)其厚度的測量;為實現(xiàn)較小厚度靶丸殼層厚度的白光反射光譜測量,可采用紫外的寬譜光源和光譜探測器提升其探測厚度下限。
在納米量級薄膜的各項相關(guān)參數(shù)中,薄膜材料的厚度是薄膜設(shè)計和制備過程中的重要參數(shù),是決定薄膜性質(zhì)和性能的基本參量之一,它對于薄膜的光學(xué)、力學(xué)和電磁性能等都有重要的影響[3]。但是由于納米量級薄膜的極小尺寸及其突出的表面效應(yīng),使得對其厚度的準(zhǔn)確測量變得困難。經(jīng)過眾多科研技術(shù)人員的探索和研究,新的薄膜厚度測量理論和測量技術(shù)不斷涌現(xiàn),測量方法實現(xiàn)了從手動到自動,有損到無損測量。由于待測薄膜材料的性質(zhì)不同,其適用的厚度測量方案也不盡相同。對于厚度在納米量級的薄膜,利用光學(xué)原理的測量技術(shù)應(yīng)用。相比于其他方法,光學(xué)測量方法因為具有精度高,速度快,無損測量等優(yōu)勢而成為主要的檢測手段。其中具有代表性的測量方法有橢圓偏振法,干涉法,光譜法,棱鏡耦合法等。白光干涉膜厚測量技術(shù)可以通過對干涉圖像的分析實現(xiàn)對薄膜的形貌變化的測量和分析。
本章主要介紹了基于白光反射光譜和白光垂直掃描干涉聯(lián)用的靶丸殼層折射率測量方法。該方法利用白光反射光譜測量靶丸殼層光學(xué)厚度,利用白光垂直掃描干涉技術(shù)測量光線通過靶丸殼層后的光程增量,二者聯(lián)立即可求得靶丸折射率和厚度數(shù)據(jù)。在實驗數(shù)據(jù)處理方面,為解決白光干涉光譜中波峰位置難以精確確定和單極值點判讀可能存在干涉級次誤差的問題,提出MATLAB曲線擬合測定極值點波長以及利用干涉級次連續(xù)性進行干涉級次判定的數(shù)據(jù)處理方法。應(yīng)用碳?xì)?CH)薄膜對測量結(jié)果的可靠性進行了實驗驗證。白光干涉膜厚測量技術(shù)可以對薄膜的厚度、反射率、折射率等光學(xué)參數(shù)進行測量。隨州怎樣選擇膜厚儀
白光干涉膜厚測量技術(shù)可以應(yīng)用于電子工業(yè)中的薄膜電阻率測量。隨州怎樣選擇膜厚儀
由于不同性質(zhì)和形態(tài)的薄膜對系統(tǒng)的測量量程和精度的需求不盡相同,因而多種測量方法各有優(yōu)缺,難以一概而論。將上述各測量特點總結(jié)如表1-1所示,按照薄膜厚度的增加,適用的測量方式分別為橢圓偏振法、分光光度法、共聚焦法和干涉法。對于小于1μm的較薄薄膜,白光干涉輪廓儀的測量精度較低,分光光度法和橢圓偏振法較適合。而對于小于200nm的薄膜,由于透過率曲線缺少峰谷值,橢圓偏振法結(jié)果更加可靠?;诎坠飧缮嬖淼墓鈱W(xué)薄膜厚度測量方案目前主要集中于測量透明或者半透明薄膜,通過使用不同的解調(diào)技術(shù)處理白光干涉的圖樣,得到待測薄膜厚度。本章在詳細(xì)研究白光干涉測量技術(shù)的常用解調(diào)方案、解調(diào)原理及其局限性的基礎(chǔ)上,分析得到了常用的基于兩個相鄰干涉峰的白光干涉解調(diào)方案不適用于極短光程差測量的結(jié)論。在此基礎(chǔ)上,我們提出了基于干涉光譜單峰值波長移動的白光干涉測量解調(diào)技術(shù)。隨州怎樣選擇膜厚儀