內(nèi)蒙古小型膜厚儀

來源: 發(fā)布時(shí)間:2024-01-02

開展白光干涉理論分析,在此基礎(chǔ)詳細(xì)介紹了白光垂直掃描干涉技術(shù)和白光反射光譜技術(shù)的基本原理,完成了應(yīng)用于靶丸殼層折射率和厚度分布測(cè)量實(shí)驗(yàn)裝置的設(shè)計(jì)及搭建。該實(shí)驗(yàn)裝置主要由白光反射光譜探測(cè)模塊、靶丸吸附轉(zhuǎn)位模塊、三維運(yùn)動(dòng)模塊、氣浮隔震平臺(tái)等幾部分組成,可實(shí)現(xiàn)靶丸的負(fù)壓吸附、靶丸位置的精密調(diào)整以及靶丸360°范圍的旋轉(zhuǎn)及特定角度下靶丸殼層白光反射光譜的測(cè)量?;诎坠獯怪睊呙韪缮婧桶坠夥瓷涔庾V的基本原理,建立了二者聯(lián)用的靶丸殼層折射率測(cè)量方法,該方法利用白光反射光譜測(cè)量靶丸殼層光學(xué)厚度,利用白光垂直掃描干涉技術(shù)測(cè)量光線通過靶丸殼層后的光程增量,二者聯(lián)立即可求得靶丸折射率和厚度數(shù)據(jù)。白光干涉膜厚測(cè)量技術(shù)可以實(shí)現(xiàn)對(duì)復(fù)雜薄膜結(jié)構(gòu)的測(cè)量。內(nèi)蒙古小型膜厚儀

白光光譜法克服了干涉級(jí)次的模糊識(shí)別問題,具有動(dòng)態(tài)測(cè)量范圍大,連續(xù)測(cè)量時(shí)波動(dòng)范圍小的特點(diǎn),但在實(shí)際測(cè)量中,由于測(cè)量誤差、儀器誤差、擬合誤差等因素,干涉級(jí)次的測(cè)量精度仍其受影響,會(huì)出現(xiàn)干擾級(jí)次的誤判和干擾級(jí)次的跳變現(xiàn)象。導(dǎo)致公式計(jì)算得到的干擾級(jí)次m值與實(shí)際譜峰干涉級(jí)次m'(整數(shù))之間有誤差。為得到準(zhǔn)確的干涉級(jí)次,本文依據(jù)干涉級(jí)次的連續(xù)特性設(shè)計(jì)了以下校正流程圖,獲得了靶丸殼層光學(xué)厚度的精確值。導(dǎo)入白光干涉光譜測(cè)量曲線。靜海區(qū)膜厚儀產(chǎn)品基本性能要求白光干涉膜厚測(cè)量技術(shù)可以通過對(duì)干涉曲線的分析實(shí)現(xiàn)對(duì)薄膜的厚度測(cè)量。

論文主要以半導(dǎo)體鍺和貴金屬金兩種材料為對(duì)象,研究了白光干涉法、表面等離子體共振法和外差干涉法實(shí)現(xiàn)納米級(jí)薄膜厚度準(zhǔn)確測(cè)量的可行性。由于不同材料薄膜的特性不同,所適用的測(cè)量方法也不同。半導(dǎo)體鍺膜具有折射率高,在通信波段(1550nm附近)不透明的特點(diǎn),選擇采用白光干涉的測(cè)量方法;而厚度更薄的金膜的折射率為復(fù)數(shù),且能激發(fā)明顯的表面等離子體效應(yīng),因而可借助基于表面等離子體共振的測(cè)量方法;為了進(jìn)一步改善測(cè)量的精度,論文還研究了外差干涉測(cè)量法,通過引入高精度的相位解調(diào)手段,檢測(cè)P光與S光之間的相位差提升厚度測(cè)量的精度。

    自上世紀(jì)60年代起,利用X及β射線、近紅外光源開發(fā)的在線薄膜測(cè)厚系統(tǒng)廣泛應(yīng)用于西方先進(jìn)國(guó)家的工業(yè)生產(chǎn)線中。20世紀(jì)70年代后,為滿足日益增長(zhǎng)的質(zhì)檢需求,電渦流、電磁電容、超聲波、晶體振蕩等多種膜厚測(cè)量技術(shù)相繼問世。90年代中期,隨著離子輔助、離子束濺射、磁控濺射、凝膠溶膠等新型薄膜制備技術(shù)取得巨大突破,以橢圓偏振法和光度法為展示的光學(xué)檢測(cè)技術(shù)以高精度、低成本、輕便環(huán)保、高速穩(wěn)固為研發(fā)方向不斷迭代更新,迅速占領(lǐng)日用電器及工業(yè)生產(chǎn)市場(chǎng),并發(fā)展出依據(jù)用戶需求個(gè)性化定制產(chǎn)品的能力。其中,對(duì)于市場(chǎng)份額占比較大的微米級(jí)薄膜,除要求測(cè)量系統(tǒng)不僅具有百納米級(jí)的測(cè)量準(zhǔn)確度及分辨力以外,還要求測(cè)量系統(tǒng)在存在不規(guī)則環(huán)境干擾的工業(yè)現(xiàn)場(chǎng)下,具備較高的穩(wěn)定性和抗干擾能力。 白光干涉膜厚測(cè)量技術(shù)可以應(yīng)用于光學(xué)薄膜設(shè)計(jì)中的薄膜參數(shù)測(cè)量。

在納米量級(jí)薄膜的各項(xiàng)相關(guān)參數(shù)中,薄膜材料的厚度是薄膜設(shè)計(jì)和制備過程中的重要參數(shù),是決定薄膜性質(zhì)和性能的基本參量之一,它對(duì)于薄膜的光學(xué)、力學(xué)和電磁性能等都有重要的影響[3]。但是由于納米量級(jí)薄膜的極小尺寸及其突出的表面效應(yīng),使得對(duì)其厚度的準(zhǔn)確測(cè)量變得困難。經(jīng)過眾多科研技術(shù)人員的探索和研究,新的薄膜厚度測(cè)量理論和測(cè)量技術(shù)不斷涌現(xiàn),測(cè)量方法實(shí)現(xiàn)了從手動(dòng)到自動(dòng),有損到無損測(cè)量。由于待測(cè)薄膜材料的性質(zhì)不同,其適用的厚度測(cè)量方案也不盡相同。對(duì)于厚度在納米量級(jí)的薄膜,利用光學(xué)原理的測(cè)量技術(shù)應(yīng)用。相比于其他方法,光學(xué)測(cè)量方法因?yàn)榫哂芯雀?,速度快,無損測(cè)量等優(yōu)勢(shì)而成為主要的檢測(cè)手段。其中具有代表性的測(cè)量方法有橢圓偏振法,干涉法,光譜法,棱鏡耦合法等。白光干涉膜厚測(cè)量技術(shù)可以對(duì)薄膜的表面和內(nèi)部進(jìn)行聯(lián)合測(cè)量和分析。襄陽膜厚儀市場(chǎng)價(jià)格

白光干涉膜厚測(cè)量技術(shù)可以通過對(duì)干涉曲線的分析實(shí)現(xiàn)對(duì)薄膜的厚度分布的測(cè)量和分析。內(nèi)蒙古小型膜厚儀

傅里葉變換是白光頻域解調(diào)方法中一種低精度的信號(hào)解調(diào)方法。早是由G.F.Fernando和T.Liu等人提出,用于低精度光纖法布里-珀羅傳感器的解調(diào)。因此,該解調(diào)方案的原理是通過傅里葉變換得到頻域的峰值頻率從而獲得光程差,進(jìn)而得到待測(cè)物理量的信息。傅里葉變換解調(diào)方案的優(yōu)點(diǎn)是解調(diào)速度較快,受干擾信號(hào)的影響較小。但是其測(cè)量精度較低。根據(jù)數(shù)字信號(hào)處理FFT(快速傅里葉變換)理論,若輸入光源波長(zhǎng)范圍為[]λ1,λ2,則所測(cè)光程差的理論小分辨率為λ1λ2/(λ2?λ1),所以此方法主要應(yīng)用于對(duì)解調(diào)精度要求不高的場(chǎng)合。傅里葉變換白光干涉法是對(duì)傅里葉變換法的改進(jìn)。該方法總結(jié)起來就是對(duì)采集到的光譜信號(hào)做傅里葉變換,然后濾波、提取主頻信號(hào)后進(jìn)行逆傅里葉變換,然后做對(duì)數(shù)運(yùn)算,并取其虛部做相位反包裹運(yùn)算,由獲得的相位得到干涉儀的光程差。該方法經(jīng)過實(shí)驗(yàn)證明其測(cè)量精度比傅里葉變換高。內(nèi)蒙古小型膜厚儀