在激光慣性約束核聚變實(shí)驗(yàn)中,靶丸的物性參數(shù)和幾何參數(shù)是靶丸制備工藝改進(jìn)和仿真模擬核聚變實(shí)驗(yàn)過程的基礎(chǔ),因此如何對靶丸多個(gè)參數(shù)進(jìn)行高精度、同步、無損的綜合檢測是激光慣性約束核聚變實(shí)驗(yàn)中的關(guān)鍵問題。以上各種薄膜厚度及折射率的測量方法各有利弊,但針對本文實(shí)驗(yàn),仍然無法滿足激光核聚變技術(shù)對靶丸參數(shù)測量的高要求,靶丸參數(shù)測量存在以下問題:不能對靶丸進(jìn)行破壞性切割測量,否則,被破壞后的靶丸無法用于于下一步工藝處理或者打靶實(shí)驗(yàn);需要同時(shí)測得靶丸的多個(gè)參數(shù),不同參數(shù)的單獨(dú)測量,無法提供靶丸制備和核聚變反應(yīng)過程中發(fā)生的結(jié)構(gòu)變化現(xiàn)象和規(guī)律,并且效率低下、沒有統(tǒng)一的測量標(biāo)準(zhǔn)。靶丸屬于自支撐球形薄膜結(jié)構(gòu),曲面應(yīng)力大、難展平的特點(diǎn)導(dǎo)致靶丸與基底不能完全貼合,在微區(qū)內(nèi)可看作類薄膜結(jié)構(gòu)??偟膩碚f,白光干涉膜厚儀是一種應(yīng)用很廣的測量薄膜厚度的儀器。微米級膜厚儀測量儀
折射率分別為1.45和1.62的2塊玻璃板,使其一端相接觸,形成67的尖劈.將波長為550nm的單色光垂直投射在劈上,并在上方觀察劈的干涉條紋,試求條紋間距。
我們可以分2種可能的情況來討論:
一般玻璃的厚度可估計(jì)為1mm的量級,這個(gè)量級相對于光的波長550nm而言,應(yīng)該算是膜厚e遠(yuǎn)遠(yuǎn)大于波長^的厚玻璃了,所以光線通過上玻璃板時(shí)應(yīng)該無干涉現(xiàn)象,同理光線通過下玻璃板時(shí)也無干涉現(xiàn)象.空氣膜厚度因劈角很小而很薄,與波長可比擬,所以光線通過空氣膜應(yīng)該有干涉現(xiàn)象,在空氣膜的下表面處有一半波損失,故光程差應(yīng)該為2n2e+λ/2.
(2)假設(shè)玻璃板厚度的量級與可見光波長量級可比擬,當(dāng)單色光垂直投射在劈尖上時(shí),上玻璃板能滿足形成薄膜干涉的條件,其光程差為2n2e+λ/2,下玻璃板也能滿足形成薄膜于涉的條件,光程差為2n1h+λ/2,但由于玻璃板膜厚均勻,h不變,人射角i=儼也不變,故玻璃板形成的薄膜干涉為等傾又等厚干涉條紋,要么玻璃板全亮,要么全暗,它不會(huì)影響空氣劈尖干涉條紋的位置和條紋間距??諝馀飧缮婀獬滩钊詾?n2e+λ/2,但玻璃板會(huì)影響劈尖干涉條紋的亮度對比度. 微米級膜厚儀測量儀光路長度越長,儀器分辨率越高,但也越容易受到干擾因素的影響,需要采取降噪措施。
光學(xué)測厚方法結(jié)合了光學(xué)、機(jī)械、電子和計(jì)算機(jī)圖像處理技術(shù),以光波長為測量基準(zhǔn),從原理上保證了納米級的測量精度。由于光學(xué)測厚是非接觸式的測量方法,因此被用于精密元件表面形貌及厚度的無損測量。針對薄膜厚度的光學(xué)測量方法,可以按照光吸收、透反射、偏振和干涉等不同光學(xué)原理分為分光光度法、橢圓偏振法、干涉法等多種測量方法。不同的測量方法各有優(yōu)缺點(diǎn)和適用范圍。因此,有一些研究采用了多通道式復(fù)合測量法,結(jié)合多種測量方法,例如橢圓偏振法和光度法結(jié)合的光譜橢偏法,彩色共焦光譜干涉和白光顯微干涉的結(jié)合法等。
對同一靶丸的相同位置進(jìn)行白光垂直掃描干涉實(shí)驗(yàn),如圖4-3所示。通過控制光學(xué)輪廓儀的運(yùn)動(dòng)機(jī)構(gòu)帶動(dòng)干涉物鏡在垂直方向上移動(dòng),測量光線穿過靶丸后反射到參考鏡與到達(dá)基底后直接反射回參考鏡的光線之間的光程差。顯然,越偏離靶丸中心的光線測得的有效壁厚越大,其光程差也越大,但這并不表示靶丸殼層的厚度。只有當(dāng)垂直穿過靶丸中心的光線測得的光程差才對應(yīng)于靶丸的上、下殼層的厚度。因此,在進(jìn)行白光垂直掃描干涉實(shí)驗(yàn)時(shí),需要選擇穿過靶丸中心的光線位置進(jìn)行測量,這樣才能準(zhǔn)確地測量靶丸殼層的厚度。此外,通過控制干涉物鏡在垂直方向上移動(dòng),可以測量出不同位置的厚度值,從而得到靶丸殼層厚度的空間分布情況。白光干涉膜厚儀的工作原理是基于膜層與底材的反射率及其相位差,通過測量反射光的干涉來計(jì)算膜層厚度。
光學(xué)測厚方法集光學(xué)、機(jī)械、電子、計(jì)算機(jī)圖像處理技術(shù)為一體,以其光波長為測量基準(zhǔn),從原理上保證了納米級的測量精度。同時(shí),光學(xué)測厚作為非接觸式的測量方法,被廣泛應(yīng)用于精密元件表面形貌及厚度的無損測量。其中,薄膜厚度光學(xué)測量方法按光吸收、透反射、偏振和干涉等光學(xué)原理可分為橢圓偏振法、分光光度法、干涉法等多種測量方法。不同的測量方法,其適用范圍各有側(cè)重,褒貶不一。因此結(jié)合多種測量方法的多通道式復(fù)合測量法也有研究,如橢圓偏振法和光度法結(jié)合的光譜橢偏法,彩色共焦光譜干涉和白光顯微干涉的結(jié)合法等??偟膩碚f,白光干涉膜厚儀是一種在薄膜厚度測量領(lǐng)域廣泛應(yīng)用的儀器。膜厚儀供應(yīng)
白光干涉膜厚儀是一種用來測量透明和平行表面薄膜厚度的儀器。微米級膜厚儀測量儀
光具有傳播的特性,不同波列在相遇的區(qū)域,振動(dòng)將相互疊加,是各列光波獨(dú)自在該點(diǎn)所引起的振動(dòng)矢量和。兩束光要發(fā)生干涉,應(yīng)必須滿足三個(gè)相干條件,即:頻率一致、振動(dòng)方向一致、相位差恒定。發(fā)生干涉的兩束光在一些地方振動(dòng)加強(qiáng),而在另一些地方振動(dòng)減弱,產(chǎn)生規(guī)則的明暗交替變化。任何干涉測量都是完全建立在這種光波典型特性上的。下圖分別表示干涉相長和干涉相消的合振幅。與激光光源相比,白光光源的相干長度在幾微米到幾十微米內(nèi),通常都很短,更為重要的是,白光光源產(chǎn)生的干涉條紋具有一個(gè)典型的特征:即條紋有一個(gè)固定不變的位置,該固定位置對應(yīng)于光程差為零的平衡位置,并在該位置白光輸出光強(qiáng)度具有最大值,并通過探測該光強(qiáng)最大值,可實(shí)現(xiàn)樣品表面位移的精密測量。此外,白光光源具有系統(tǒng)抗干擾能力強(qiáng)、穩(wěn)定性好且動(dòng)態(tài)范圍大、結(jié)構(gòu)簡單,成本低廉等優(yōu)點(diǎn)。因此,白光垂直掃描干涉、白光反射光譜等基于白光干涉的光學(xué)測量技術(shù)在薄膜三維形貌測量、薄膜厚度精密測量等領(lǐng)域得以廣泛應(yīng)用。微米級膜厚儀測量儀