薄膜干涉原理根據(jù)薄膜干涉原理…,當(dāng)波長(zhǎng)為^的單色光以人射角f從折射率為n.的介質(zhì)入射到折射率為n:、厚度為e的介質(zhì)膜面(見圖1)時(shí),干涉明、暗紋條件為:
2e(n22一n12sin2i)1/2+δ’=kλ,k=1,2,3,4,5...(1)
2e(n22一n12sin2i)1/2+δ’=(2k+1)λ/2,k=0,1,2,3,4...(2)
E式中k為干涉條紋級(jí)次;δ’為半波損失.
普通物理教材中討論薄膜干涉問(wèn)題時(shí),均近似地認(rèn)為,δ’是指入射光波在光疏介質(zhì)中前進(jìn),遇到光密介質(zhì)i的界面時(shí),在不超過(guò)臨界角的條件下,不論人射角的大小如何,在反射過(guò)程中都將產(chǎn)生半個(gè)波長(zhǎng)的損失(嚴(yán)格地說(shuō), 只在掠射和正射情況下反射光的振動(dòng)方向與入射光的振動(dòng)方向才幾乎相反),故δ’是否存在決定于n1,n2,n3大小的比較。當(dāng)膜厚e一定,而入射角j可變時(shí),干涉條紋級(jí)次^隨f而變,即同樣的人射角‘對(duì)應(yīng)同一級(jí)明紋(或暗紋),叫等傾干涉,如以不同的入射角入射到平板介質(zhì)上.當(dāng)入射角£一定,而膜厚??勺儠r(shí),干涉條紋級(jí)次隨。而變,即同樣的膜厚e對(duì)應(yīng)同一級(jí)明紋(或暗紋)。叫等厚干涉,如劈尖干涉和牛頓環(huán). Michelson干涉儀的光路長(zhǎng)度是影響儀器精度的重要因素。新品膜厚儀
在激光慣性約束核聚變實(shí)驗(yàn)中,靶丸的物性參數(shù)和幾何參數(shù)對(duì)靶丸制備工藝改進(jìn)和仿真模擬核聚變實(shí)驗(yàn)過(guò)程至關(guān)重要。然而,如何對(duì)靶丸多個(gè)參數(shù)進(jìn)行同步、高精度、無(wú)損的綜合檢測(cè)是激光慣性約束核聚變實(shí)驗(yàn)中的關(guān)鍵問(wèn)題。雖然已有多種薄膜厚度及折射率的測(cè)量方法,但仍然無(wú)法滿足激光核聚變技術(shù)對(duì)靶丸參數(shù)測(cè)量的高要求。此外,靶丸的參數(shù)測(cè)量存在以下問(wèn)題:不能對(duì)靶丸進(jìn)行破壞性切割測(cè)量,否則被破壞的靶丸無(wú)法用于后續(xù)工藝處理或打靶實(shí)驗(yàn);需要同時(shí)測(cè)得靶丸的多個(gè)參數(shù),因?yàn)椴煌瑓?shù)的單獨(dú)測(cè)量無(wú)法提供靶丸制備和核聚變反應(yīng)過(guò)程中發(fā)生的結(jié)構(gòu)變化的現(xiàn)象和規(guī)律,并且效率低下、沒(méi)有統(tǒng)一的測(cè)量標(biāo)準(zhǔn)。由于靶丸屬于自支撐球形薄膜結(jié)構(gòu),曲面應(yīng)力大、難以展平,因此靶丸與基底不能完全貼合,可在微觀區(qū)域內(nèi)視作類薄膜結(jié)構(gòu)。國(guó)產(chǎn)膜厚儀生產(chǎn)廠家哪家好總的來(lái)說(shuō),白光干涉膜厚儀是一種應(yīng)用廣、具有高精度和可靠性的薄膜厚度測(cè)量?jī)x器。
傅里葉變換是白光頻域解調(diào)方法中的一種低精度信號(hào)解調(diào)方法,起初由G.F.Fernando和T.Liu等人提出,用于低精度光纖法布里-珀羅傳感器的解調(diào)。該解調(diào)方案的原理是通過(guò)傅里葉變換得到頻域的峰值頻率從而獲得光程差,并得到待測(cè)物理量的信息。傅里葉變換解調(diào)方案的優(yōu)勢(shì)是解調(diào)速度快,受干擾信號(hào)影響較小,但精度不高。根據(jù)數(shù)字信號(hào)處理FFT理論,若輸入光源波長(zhǎng)范圍為[λ1,λ2],則所測(cè)光程差的理論小分辨率為λ1λ2/(λ2-λ1),因此該方法主要應(yīng)用于解調(diào)精度要求不高的場(chǎng)合。傅里葉變換白光干涉法是對(duì)傅里葉變換法的改進(jìn)。該方法總結(jié)起來(lái)是對(duì)采集到的光譜信號(hào)進(jìn)行傅里葉變換,然后濾波、提取主頻信號(hào),接著進(jìn)行逆傅里葉變換、對(duì)數(shù)運(yùn)算,之后取其虛部進(jìn)行相位反包裹運(yùn)算,從而通過(guò)得到的相位來(lái)獲得干涉儀的光程差。經(jīng)實(shí)驗(yàn)證明,該方法測(cè)量精度比傅里葉變換方法更高。
薄膜材料的厚度在納米級(jí)薄膜的各項(xiàng)相關(guān)參數(shù)中,是制備和設(shè)計(jì)中一個(gè)重要的參量,也是決定薄膜性質(zhì)和性能的關(guān)鍵參量之一。然而,由于其極小尺寸及表面效應(yīng)的影響,納米級(jí)薄膜的厚度準(zhǔn)確測(cè)量變得困難。科研技術(shù)人員通過(guò)不斷的探索研究,提出了新的薄膜厚度測(cè)量理論和技術(shù),并將測(cè)量方法從手動(dòng)到自動(dòng)、有損到無(wú)損等不斷改進(jìn)。對(duì)于不同性質(zhì)的薄膜,其適用的厚度測(cè)量方案也不相同。在納米級(jí)薄膜中,采用光學(xué)原理的測(cè)量技術(shù)可以實(shí)現(xiàn)精度高、速度快、無(wú)損測(cè)量等優(yōu)點(diǎn),成為主要的檢測(cè)手段。典型的測(cè)量方法包括橢圓偏振法、干涉法、光譜法、棱鏡耦合法等。標(biāo)準(zhǔn)樣品的選擇和使用對(duì)于保持儀器準(zhǔn)確度至關(guān)重要。
膜厚儀是一種用于測(cè)量薄膜厚度的儀器,它的測(cè)量原理主要是通過(guò)光學(xué)或物理方法來(lái)實(shí)現(xiàn)的。在導(dǎo)電薄膜中,膜厚儀具有廣泛的應(yīng)用,可以用于實(shí)時(shí)監(jiān)測(cè)薄膜的厚度變化,從而保證薄膜的質(zhì)量和性能。膜厚儀的測(cè)量原理主要有兩種:一種是光學(xué)方法,通過(guò)測(cè)量薄膜對(duì)光的反射、透射或干涉來(lái)確定薄膜的厚度;另一種是物理方法,通過(guò)測(cè)量薄膜對(duì)射線或粒子的散射或吸收來(lái)確定薄膜的厚度。這兩種方法都有各自的優(yōu)缺點(diǎn),可以根據(jù)具體的應(yīng)用場(chǎng)景來(lái)選擇合適的測(cè)量原理。在導(dǎo)電薄膜中,膜厚儀可以用于實(shí)時(shí)監(jiān)測(cè)薄膜的厚度變化。導(dǎo)電薄膜通常用于各種電子器件中,如晶體管、太陽(yáng)能電池等。薄膜的厚度對(duì)器件的性能有著重要的影響,因此需要對(duì)薄膜的厚度進(jìn)行精確的控制和監(jiān)測(cè)。膜厚儀可以實(shí)時(shí)測(cè)量薄膜的厚度變化,及時(shí)發(fā)現(xiàn)問(wèn)題并進(jìn)行調(diào)整,從而保證薄膜的質(zhì)量和性能。此外,膜厚儀還可以用于薄膜的質(zhì)量檢測(cè)和分析。通過(guò)對(duì)薄膜的厚度進(jìn)行測(cè)量,可以了解薄膜的均勻性、表面平整度等質(zhì)量指標(biāo),為薄膜的生產(chǎn)和加工提供重要的參考數(shù)據(jù)。膜厚儀還可以用于研究薄膜的光學(xué)、電學(xué)等性能,為薄膜材料的研發(fā)和應(yīng)用提供支持光路長(zhǎng)度越長(zhǎng),儀器分辨率越高,但也越容易受到干擾因素的影響,需要采取降噪措施。高速膜厚儀調(diào)試
廣泛應(yīng)用于半導(dǎo)體、光學(xué)、電子、化學(xué)等領(lǐng)域,為研究和開發(fā)提供了有力的手段。新品膜厚儀
在白光干涉中,當(dāng)光程差為零時(shí),會(huì)出現(xiàn)零級(jí)干涉條紋。隨著光程差的增加,光源譜寬范圍內(nèi)的每條譜線形成的干涉條紋之間會(huì)發(fā)生偏移,疊加后整體效果導(dǎo)致條紋對(duì)比度降低。白光干涉原理的測(cè)量系統(tǒng)精度高,可以進(jìn)行測(cè)量。采用白光干涉原理的測(cè)量系統(tǒng)具有抗干擾能力強(qiáng)、動(dòng)態(tài)范圍大、快速檢測(cè)和結(jié)構(gòu)簡(jiǎn)單緊湊等優(yōu)點(diǎn)。雖然普通的激光干涉與白光干涉有所區(qū)別,但它們也具有許多共同之處。我們可以將白光看作一系列理想的單色光在時(shí)域上的相干疊加,而在頻域上觀察到的就是不同波長(zhǎng)對(duì)應(yīng)的干涉光強(qiáng)變化曲線。新品膜厚儀