白光干涉時域解調(diào)方案通過機械掃描部件驅(qū)動干涉儀的反射鏡移動,補償光程差,實現(xiàn)對信號的解調(diào)。該系統(tǒng)的基本結(jié)構(gòu)如圖2-1所示。光纖白光干涉儀的兩個輸出臂分別作為參考臂和測量臂,用于將待測的物理量轉(zhuǎn)換為干涉儀兩臂的光程差變化。測量臂因待測物理量的變化而增加未知光程差,參考臂則通過移動反射鏡來補償測量臂所引入的光程差。當(dāng)干涉儀兩臂光程差ΔL=0時,即兩個干涉光束的光程相等時,將出現(xiàn)干涉極大值,觀察到中心零級干涉條紋,這種現(xiàn)象與外界的干擾因素?zé)o關(guān),因此可以利用它來獲取待測物理量的值。會影響輸出信號強度的因素包括:入射光功率、光纖的傳輸損耗、各端面的反射等。雖然外界環(huán)境的擾動會影響輸出信號的強度,但對于零級干涉條紋的位置并不會造成影響。
白光干涉膜厚儀需要校準(zhǔn),標(biāo)準(zhǔn)樣品的選擇和使用至關(guān)重要。本地膜厚儀設(shè)備生產(chǎn)
本章介紹了基于白光反射光譜和白光垂直掃描干涉聯(lián)用的靶丸殼層折射率測量方法。該方法利用白光反射光譜測量靶丸殼層光學(xué)厚度,利用白光垂直掃描干涉技術(shù)測量光線通過靶丸殼層后的光程增量,結(jié)合起來即可得到靶丸的折射率和厚度數(shù)據(jù)。在實驗數(shù)據(jù)處理方面,為解決白光干涉光譜中波峰位置難以精確確定和單極值點判讀可能存在干涉級次誤差的問題,提出了利用MATLAB曲線擬合確定極值點波長以及根據(jù)干涉級次連續(xù)性進(jìn)行干涉級次判斷的數(shù)據(jù)處理方法。通過應(yīng)用碳?xì)?CH)薄膜進(jìn)行實驗驗證,證明該方法具有較高的測量精度和可靠性。小型膜厚儀制造廠家白光干涉膜厚測量技術(shù)可以實現(xiàn)對薄膜的非接觸式測量。
由于靶丸自身特殊的特點和極端的實驗條件,使得靶丸參數(shù)的測試工作變得異常復(fù)雜。光學(xué)測量方法具有無損、非接觸、測量效率高、操作簡便等優(yōu)勢,因此成為了測量靶丸參數(shù)的常用方式。目前常用于靶丸幾何參數(shù)或光學(xué)參數(shù)測量的方法有白光干涉法、光學(xué)顯微干涉法、激光差動共焦法等。然而,靶丸殼層折射率是沖擊波分時調(diào)控實驗研究中的重要參數(shù),因此對其進(jìn)行精密測量具有重要意義。 常用的折射率測量方法有橢圓偏振法、折射率匹配法、白光光譜法、布儒斯特角法等。
薄膜干涉原理根據(jù)薄膜干涉原理…,當(dāng)波長為^的單色光以人射角f從折射率為n.的介質(zhì)入射到折射率為n:、厚度為e的介質(zhì)膜面(見圖1)時,干涉明、暗紋條件為:
2e(n22一n12sin2i)1/2+δ’=kλ,k=1,2,3,4,5...(1)
2e(n22一n12sin2i)1/2+δ’=(2k+1)λ/2,k=0,1,2,3,4...(2)
E式中k為干涉條紋級次;δ’為半波損失.
普通物理教材中討論薄膜干涉問題時,均近似地認(rèn)為,δ’是指入射光波在光疏介質(zhì)中前進(jìn),遇到光密介質(zhì)i的界面時,在不超過臨界角的條件下,不論人射角的大小如何,在反射過程中都將產(chǎn)生半個波長的損失(嚴(yán)格地說, 只在掠射和正射情況下反射光的振動方向與入射光的振動方向才幾乎相反),故δ’是否存在決定于n1,n2,n3大小的比較。當(dāng)膜厚e一定,而入射角j可變時,干涉條紋級次^隨f而變,即同樣的人射角‘對應(yīng)同一級明紋(或暗紋),叫等傾干涉,如以不同的入射角入射到平板介質(zhì)上.當(dāng)入射角£一定,而膜厚??勺儠r,干涉條紋級次隨。而變,即同樣的膜厚e對應(yīng)同一級明紋(或暗紋)。叫等厚干涉,如劈尖干涉和牛頓環(huán). 隨著技術(shù)的不斷進(jìn)步和應(yīng)用領(lǐng)域的擴展,白光干涉膜厚儀的性能和功能將得到進(jìn)一步提高;
晶圓對于半導(dǎo)體器件至關(guān)重要,膜厚是影響晶圓物理性質(zhì)的重要參數(shù)之一。通常對膜厚的測量有橢圓偏振法、探針法、光學(xué)法等,橢偏法設(shè)備昂貴,探針法又會損傷晶圓表面。利用光學(xué)原理進(jìn)行精密測試,一直是計量和測試技術(shù)領(lǐng)域中的主要方法之一,在光學(xué)測量領(lǐng)域,基于干涉原理的測量系統(tǒng)已成為物理量檢測中十分精確的系統(tǒng)之一。光的干涉計量與測試本質(zhì)是以光波的波長作為單位來進(jìn)行計量的,現(xiàn)代的干涉測試與計量技術(shù)已能達(dá)到一個波長的幾百分之一的測量精度,干涉測量的更大特點是它具有更高的靈敏度(或分辨率)和精度,。而且絕大部分干涉測試都是非接觸的,不會對被測件帶來表面損傷和附加誤差;測量對象較廣,并不局限于金屬或非金屬;可以檢測多參數(shù),如:長度、寬度、直徑、表面粗糙度、面積、角度等。廣泛應(yīng)用于半導(dǎo)體、光學(xué)、電子、化學(xué)等領(lǐng)域,為研究和開發(fā)提供了有力的手段。光干涉膜厚儀設(shè)備
隨著技術(shù)的進(jìn)步和應(yīng)用領(lǐng)域的拓展,白光干涉膜厚儀的性能和功能將不斷提高和擴展 。本地膜厚儀設(shè)備生產(chǎn)
在對目前常用的白光干涉測量方案進(jìn)行比較研究后發(fā)現(xiàn),當(dāng)兩個干涉光束的光程差非常小導(dǎo)致干涉光譜只有一個峰時,基于相鄰干涉峰間距的解調(diào)方案不再適用。因此,我們提出了一種基于干涉光譜單峰值波長移動的測量方案,適用于極小光程差。這種方案利用干涉光譜的峰值波長會隨光程差變化而周期性地出現(xiàn)紅移和藍(lán)移,當(dāng)光程差在較小范圍內(nèi)變化時,峰值波長的移動與光程差成正比。我們在光纖白光干涉溫度傳感系統(tǒng)上驗證了這一測量方案,并成功測量出光纖端面半導(dǎo)體鍺薄膜的厚度。實驗表明,鍺膜厚度為一定值,與臺階儀測量結(jié)果存在差異是由于薄膜表面本身并不光滑,臺階儀的測量結(jié)果只能作為參考值。誤差主要來自光源的波長漂移和溫度誤差。本地膜厚儀設(shè)備生產(chǎn)