膜厚儀品牌企業(yè)

來(lái)源: 發(fā)布時(shí)間:2024-05-01

常用白光垂直掃描干涉系統(tǒng)的原理:入射的白光光束通過(guò)半反半透鏡進(jìn)入到顯微干涉物鏡后,被分光鏡分成兩部分,一個(gè)部分入射到固定參考鏡,一部分入射到樣品表面,當(dāng)參考鏡表面和樣品表面的反射光通過(guò)分光鏡后,再次匯聚發(fā)生干涉,干涉光通過(guò)透鏡后,利用電荷耦合器(CCD)可探測(cè)整個(gè)視場(chǎng)內(nèi)雙白光光束的干涉圖像。利用Z向精密位移臺(tái)帶動(dòng)干涉鏡頭或樣品臺(tái)Z向掃描,可獲得一系列干涉圖像。根據(jù)干涉圖像序列中對(duì)應(yīng)點(diǎn)的光強(qiáng)隨光程差變化曲線,可得該點(diǎn)的Z向相對(duì)位移;然后,由CCD圖像中每個(gè)像素點(diǎn)光強(qiáng)最大值對(duì)應(yīng)的Z向位置獲得被測(cè)樣品表面的三維形貌。膜厚儀的干涉測(cè)量能力較高,可以提供精確和可信的膜層厚度測(cè)量結(jié)果。膜厚儀品牌企業(yè)

薄膜作為一種特殊的微結(jié)構(gòu) ,近年來(lái)在電子學(xué) 、摩擦學(xué)、現(xiàn)代光學(xué)得到了廣泛的應(yīng)用,薄膜的測(cè)試技術(shù)變得越來(lái)越重要。尤其是在厚度這一特定方向上,尺寸很小,基本上都是微觀可測(cè)量。因此,在微納測(cè)量領(lǐng)域中,薄膜厚度的測(cè)試是一個(gè)非常重要而且很實(shí)用的研究方向。在工業(yè)生產(chǎn)中,薄膜的厚度直接關(guān)系到薄膜能否正常工作。在半導(dǎo)體工業(yè)中,膜厚的測(cè)量是硅單晶體表面熱氧化厚度以及平整度質(zhì)量控制的重要手段。薄膜的厚度影響薄膜的電磁性能、力學(xué)性能和光學(xué)性能等,所以準(zhǔn)確地測(cè)量薄膜的厚度成為一種關(guān)鍵技術(shù)。蘇州膜厚儀主要功能與優(yōu)勢(shì)操作需要一定的專(zhuān)業(yè)素養(yǎng)和經(jīng)驗(yàn),需要進(jìn)行充分的培訓(xùn)和實(shí)踐。

由于不同性質(zhì)和形態(tài)的薄膜對(duì)系統(tǒng)的測(cè)量量程和精度的需求不盡相同,因而多種測(cè)量方法各有優(yōu)缺,難以一概而論。將上述各測(cè)量特點(diǎn)總結(jié)如表1-1所示,按照薄膜厚度的增加,適用的測(cè)量方式分別為橢圓偏振法、分光光度法、共聚焦法和干涉法。對(duì)于小于1μm的較薄薄膜,白光干涉輪廓儀的測(cè)量精度較低,分光光度法和橢圓偏振法較適合。而對(duì)于小于200 nm的薄膜,由于透過(guò)率曲線缺少峰谷值,橢圓偏振法結(jié)果更加可靠。基于白光干涉原理的光學(xué)薄膜厚度測(cè)量方案目前主要集中于測(cè)量透明或者半透明薄膜,通過(guò)使用不同的解調(diào)技術(shù)處理白光干涉的圖樣,得到待測(cè)薄膜厚度。本章在詳細(xì)研究白光干涉測(cè)量技術(shù)的常用解調(diào)方案、解調(diào)原理及其局限性的基礎(chǔ)上,分析得到了常用的基于兩個(gè)相鄰干涉峰的白光干涉解調(diào)方案不適用于極短光程差測(cè)量的結(jié)論。在此基礎(chǔ)上,我們提出了基于干涉光譜單峰值波長(zhǎng)移動(dòng)的白光干涉測(cè)量解調(diào)技術(shù)。

白光干涉的相干原理早在1975年就已經(jīng)被提出 ,隨后于1976年在光纖通信領(lǐng)域中獲得了實(shí)現(xiàn)。1983年,BrianCulshaw的研究小組報(bào)道了白光干涉技術(shù)在光纖傳感領(lǐng)域中的應(yīng)用。隨后在1984年,報(bào)道了基于白光干涉原理的完整的位移傳感系統(tǒng)。該研究成果證明了白光干涉技術(shù)可以被用于測(cè)量能夠轉(zhuǎn)換成位移的物理參量。此后的幾年間,白光干涉應(yīng)用于溫度、壓力等的研究相繼被報(bào)道。自上世紀(jì)九十年代以來(lái),白光干涉技術(shù)快速發(fā)展,提供了實(shí)現(xiàn)測(cè)量的更多的解決方案。近幾年以來(lái),由于傳感器設(shè)計(jì)與研制的進(jìn)步,信號(hào)處理新方案的提出,以及傳感器的多路復(fù)用[39]等技術(shù)的發(fā)展,使得白光干涉測(cè)量技術(shù)的發(fā)展更加迅速。隨著技術(shù)的不斷進(jìn)步和應(yīng)用領(lǐng)域的擴(kuò)展,白光干涉膜厚儀的性能和功能將得到進(jìn)一步提高;

本文主要研究了如何采用白光干涉法、表面等離子體共振法和外差干涉法來(lái)實(shí)現(xiàn)納米級(jí)薄膜厚度的準(zhǔn)確測(cè)量,研究對(duì)象為半導(dǎo)體鍺和貴金屬金兩種材料。由于不同材料薄膜的特性差異,所適用的測(cè)量方法也會(huì)有所不同。對(duì)于折射率高,在通信波段(1550nm附近)不透明的半導(dǎo)體鍺膜,采用白光干涉的測(cè)量方法;而對(duì)于厚度更薄的金膜,由于其折射率為復(fù)數(shù),且具有表面等離子體效應(yīng),所以采用基于表面等離子體共振的測(cè)量方法會(huì)更合適。為了進(jìn)一步提高測(cè)量精度,本文還研究了外差干涉測(cè)量法,通過(guò)引入高精度的相位解調(diào)手段來(lái)檢測(cè)P光與S光之間的相位差,以提高厚度測(cè)量的精度。增加光路長(zhǎng)度可以提高儀器分辨率,但同時(shí)也會(huì)更容易受到振動(dòng)等干擾,需要采取降噪措施。測(cè)量膜厚儀設(shè)備

可以配合不同的軟件進(jìn)行分析和數(shù)據(jù)處理,例如建立數(shù)據(jù)庫(kù)、統(tǒng)計(jì)數(shù)據(jù)等 。膜厚儀品牌企業(yè)

薄膜在現(xiàn)代光學(xué)、電子、醫(yī)療、能源和建材等技術(shù)領(lǐng)域得到廣泛應(yīng)用,可以提高器件性能。但是由于薄膜制備工藝和生產(chǎn)環(huán)境等因素的影響,成品薄膜存在厚度分布不均和表面粗糙度大等問(wèn)題,導(dǎo)致其光學(xué)和物理性能無(wú)法達(dá)到設(shè)計(jì)要求,嚴(yán)重影響其性能和應(yīng)用。因此,需要開(kāi)發(fā)出精度高、體積小、穩(wěn)定性好的測(cè)量系統(tǒng)以滿(mǎn)足微米級(jí)工業(yè)薄膜的在線檢測(cè)需求。當(dāng)前的光學(xué)薄膜測(cè)厚方法無(wú)法同時(shí)兼顧高精度、輕小體積和合理的成本,而具有納米級(jí)測(cè)量分辨率的商用薄膜測(cè)厚儀器價(jià)格昂貴、體積大,無(wú)法滿(mǎn)足工業(yè)生產(chǎn)現(xiàn)場(chǎng)的在線測(cè)量需求。因此,提出了一種基于反射光譜原理的高精度工業(yè)薄膜厚度測(cè)量解決方案,研發(fā)了小型化、低成本的薄膜厚度測(cè)量系統(tǒng),并提出了一種無(wú)需標(biāo)定樣品的高效穩(wěn)定的膜厚計(jì)算算法。該系統(tǒng)可以實(shí)現(xiàn)微米級(jí)工業(yè)薄膜的厚度測(cè)量。膜厚儀品牌企業(yè)