微納制造技術(shù)的發(fā)展推動(dòng)著檢測技術(shù)向微納領(lǐng)域進(jìn)軍 ,微結(jié)構(gòu)和薄膜結(jié)構(gòu)作為微納器件中的重要組成部分,在半導(dǎo)體、航天航空、醫(yī)學(xué)、現(xiàn)代制造等領(lǐng)域得到了廣泛的應(yīng)用,由于其微小和精細(xì)的特征,傳統(tǒng)檢測方法不能滿足要求。白光干涉法具有非接觸、無損傷、高精度等特點(diǎn),被廣泛應(yīng)用在微納檢測領(lǐng)域,另外光譜測量具有高效率、測量速度快的優(yōu)點(diǎn)。因此,本文提出了白光干涉光譜測量方法并搭建了測量系統(tǒng)。和傳統(tǒng)白光掃描干涉方法相比,其特點(diǎn)是具有較強(qiáng)的環(huán)境噪聲抵御能力,并且測量速度較快??蓽y量大氣壓下薄膜厚度在1納米到1毫米之間。白光干涉膜厚儀制作廠家
白光掃描干涉法能免除色光相移干涉術(shù)測量的局限性 。白光掃描干涉法采用白光作為光源,白光作為一種寬光譜的光源,相干長度較短,因此發(fā)生干涉的位置只能在很小的空間范圍內(nèi)。而且在白光干涉時(shí),有一個(gè)確切的零點(diǎn)位置。測量光和參考光的光程相等時(shí),所有波段的光都會(huì)發(fā)生相長干涉,這時(shí)就能觀測到有一個(gè)很明亮的零級(jí)條紋,同時(shí)干涉信號(hào)也出現(xiàn)最大值,通過分析這個(gè)干涉信號(hào),就能得到表面上對應(yīng)數(shù)據(jù)點(diǎn)的相對高度,從而得到被測物體的幾何形貌。白光掃描干涉術(shù)是通過測量干涉條紋來完成的,而干涉條紋的清晰度直接影響測試精度。因此,為了提高精度,就需要更為復(fù)雜的光學(xué)系統(tǒng),這使得條紋的測量變成一項(xiàng)費(fèi)力又費(fèi)時(shí)的工作。防水膜厚儀廠家現(xiàn)貨白光干涉膜厚儀可以配合不同的軟件進(jìn)行分析和數(shù)據(jù)處理,例如建立數(shù)據(jù)庫、統(tǒng)計(jì)數(shù)據(jù)等。
自1986年E.Wolf證明了相關(guān)誘導(dǎo)光譜的變化以來 ,人們在理論和實(shí)驗(yàn)上展開了討論和研究。結(jié)果表明,動(dòng)態(tài)的光譜位移可以產(chǎn)生新的濾波器,應(yīng)用于光學(xué)信號(hào)處理和加密領(lǐng)域。在論文中,我們提出的基于白光干涉光譜單峰值波長移動(dòng)的解調(diào)方案,可以用于當(dāng)光程差非常小導(dǎo)致其干涉光譜只有一個(gè)干涉峰時(shí)的信號(hào)解調(diào),實(shí)現(xiàn)納米薄膜厚度測量。在頻域干涉中,當(dāng)干涉光程差超過光源相干長度的時(shí)候,仍然可以觀察到干涉條紋。出現(xiàn)這種現(xiàn)象的原因是白光光源的光譜可以看成是許多單色光的疊加,每一列單色光的相干長度都是無限的。當(dāng)我們使用光譜儀來接收干涉光譜時(shí),由于光譜儀光柵的分光作用,將寬光譜的白光變成了窄帶光譜,從而使相干長度發(fā)生變化。
自上世紀(jì)60年代起 ,利用X及β射線、近紅外光源開發(fā)的在線薄膜測厚系統(tǒng)廣泛應(yīng)用于西方先進(jìn)國家的工業(yè)生產(chǎn)線中。20世紀(jì)70年代后,為滿足日益增長的質(zhì)檢需求,電渦流、電磁電容、超聲波、晶體振蕩等多種膜厚測量技術(shù)相繼問世。90年代中期,隨著離子輔助、離子束濺射、磁控濺射、凝膠溶膠等新型薄膜制備技術(shù)取得巨大突破,以橢圓偏振法和光度法為展示的光學(xué)檢測技術(shù)以高精度、低成本、輕便環(huán)保、高速穩(wěn)固為研發(fā)方向不斷迭代更新,迅速占領(lǐng)日用電器及工業(yè)生產(chǎn)市場,并發(fā)展出依據(jù)用戶需求個(gè)性化定制產(chǎn)品的能力。其中,對于市場份額占比較大的微米級(jí)薄膜,除要求測量系統(tǒng)不僅具有百納米級(jí)的測量準(zhǔn)確度及分辨力以外,還要求測量系統(tǒng)在存在不規(guī)則環(huán)境干擾的工業(yè)現(xiàn)場下,具備較高的穩(wěn)定性和抗干擾能力。這種膜厚儀可以測量大氣壓下 。
在激光慣性約束核聚變實(shí)驗(yàn)中 ,靶丸的物性參數(shù)和幾何參數(shù)是靶丸制備工藝改進(jìn)和仿真模擬核聚變實(shí)驗(yàn)過程的基礎(chǔ),因此如何對靶丸多個(gè)參數(shù)進(jìn)行同步、高精度、無損的綜合檢測是激光慣性約束核聚變實(shí)驗(yàn)中的關(guān)鍵問題。以上各種薄膜厚度及折射率的測量方法各有利弊,但針對本文實(shí)驗(yàn),仍然無法滿足激光核聚變技術(shù)對靶丸參數(shù)測量的高要求,靶丸參數(shù)測量存在以下問題:不能對靶丸進(jìn)行破壞性切割測量,否則,被破壞后的靶丸無法用于于下一步工藝處理或者打靶實(shí)驗(yàn);需要同時(shí)測得靶丸的多個(gè)參數(shù),不同參數(shù)的單獨(dú)測量,無法提供靶丸制備和核聚變反應(yīng)過程中發(fā)生的結(jié)構(gòu)變化現(xiàn)象和規(guī)律,并且效率低下、沒有統(tǒng)一的測量標(biāo)準(zhǔn)。靶丸屬于自支撐球形薄膜結(jié)構(gòu),曲面應(yīng)力大、難展平的特點(diǎn)導(dǎo)致靶丸與基底不能完全貼合,在微區(qū)內(nèi)可看作類薄膜結(jié)構(gòu)白光干涉膜厚測量技術(shù)可以實(shí)現(xiàn)對薄膜的大范圍測量和分析。薄膜膜厚儀常用解決方案
白光干涉膜厚測量技術(shù)的優(yōu)化需要對實(shí)驗(yàn)方法和算法進(jìn)行改進(jìn) 。白光干涉膜厚儀制作廠家
由于不同性質(zhì)和形態(tài)的薄膜對系統(tǒng)的測量量程和精度的需求不盡相同,因而多種測量方法各有優(yōu)缺,難以一概而論。將上述各測量特點(diǎn)總結(jié)如表1-1所示,按照薄膜厚度的增加,適用的測量方式分別為橢圓偏振法、分光光度法、共聚焦法和干涉法。對于小于1μm的較薄薄膜,白光干涉輪廓儀的測量精度較低,分光光度法和橢圓偏振法較適合。而對于小于200 nm的薄膜,由于透過率曲線缺少峰谷值,橢圓偏振法結(jié)果更加可靠?;诎坠飧缮嬖淼墓鈱W(xué)薄膜厚度測量方案目前主要集中于測量透明或者半透明薄膜,通過使用不同的解調(diào)技術(shù)處理白光干涉的圖樣,得到待測薄膜厚度。本章在詳細(xì)研究白光干涉測量技術(shù)的常用解調(diào)方案、解調(diào)原理及其局限性的基礎(chǔ)上,分析得到了常用的基于兩個(gè)相鄰干涉峰的白光干涉解調(diào)方案不適用于極短光程差測量的結(jié)論。在此基礎(chǔ)上,我們提出了基于干涉光譜單峰值波長移動(dòng)的白光干涉測量解調(diào)技術(shù)。白光干涉膜厚儀制作廠家