美國高速高分辨率多光子顯微鏡

來源: 發(fā)布時(shí)間:2024-05-22

2020年,TonmoyChakraborty等人提出了加速2PM軸向掃描速度的方法[2]。在光學(xué)顯微鏡中,物鏡或樣品緩慢的軸向掃描速度限制了體成像的速度。近年來,通過使用遠(yuǎn)程聚焦技術(shù)或電調(diào)諧透鏡(ETL)已經(jīng)實(shí)現(xiàn)了快速軸向掃描。但遠(yuǎn)程對(duì)焦時(shí)對(duì)反射鏡的機(jī)械驅(qū)動(dòng)會(huì)限制軸向掃描速度,ETL會(huì)引入球差和高階像差,無法進(jìn)行高分辨率成像。為了克服這些限制,該小組引入了一種新的光學(xué)設(shè)計(jì),可以將橫向掃描轉(zhuǎn)換為無球面像差的軸向掃描,以實(shí)現(xiàn)高分辨率成像。有兩種方法可以實(shí)現(xiàn)這種設(shè)計(jì)。***個(gè)可以執(zhí)行離散的軸向掃描,另一個(gè)可以執(zhí)行連續(xù)的軸向掃描。如圖3a所示,特定裝置由兩個(gè)垂直臂組成,每個(gè)臂具有4F望遠(yuǎn)鏡和物鏡。遠(yuǎn)程聚焦臂由振鏡掃描鏡(GSM)和空氣物鏡(OBJ1)組成,另一個(gè)臂(稱為照明臂)由浸沒物鏡(OBJ2)組成。兩個(gè)臂對(duì)齊,使得GSM與兩個(gè)物鏡的后焦平面共軛。準(zhǔn)直后的激光束經(jīng)偏振分束器反射進(jìn)入遠(yuǎn)程聚焦臂,由GSM進(jìn)行掃描,使OBJ1產(chǎn)生的激光焦點(diǎn)可以進(jìn)行水平掃描。多光子顯微鏡的發(fā)展歷史充滿了貢獻(xiàn)、開發(fā)、進(jìn)步和數(shù)個(gè)世紀(jì)以來多個(gè)來源和地點(diǎn)的改進(jìn)。美國高速高分辨率多光子顯微鏡

美國高速高分辨率多光子顯微鏡,多光子顯微鏡

通過添加FACED模塊,可以將基于標(biāo)準(zhǔn)振鏡的現(xiàn)有2PM輕松轉(zhuǎn)換為千赫茲成像系統(tǒng)。FACED雙光子熒光顯微鏡遵循光柵掃描,需要很少的計(jì)算處理,在稀疏或密集的標(biāo)記樣本中均可以使用,并且不受串?dāng)_的影響,而且對(duì)整個(gè)圖像平面采樣后可以進(jìn)行運(yùn)動(dòng)校正。實(shí)驗(yàn)中沒有觀察到光損傷的跡象,此外,子脈沖延遲到達(dá)相同的樣品位置,能為熒光團(tuán)提供充足的時(shí)間使其從易于破壞的暗態(tài)返回到基態(tài),可以明顯減少光漂白。使用現(xiàn)有的傳感器,F(xiàn)ACED雙光子熒光顯微鏡可以提供足夠的速度和靈敏度來檢測神經(jīng)元過程中的鈣瞬變和谷氨酸瞬變,以及來自細(xì)胞體的尖峰和亞閾值電壓。該組使用基于FACED的2PM顯微鏡,在小鼠大腦中實(shí)現(xiàn)了千赫茲速率的神經(jīng)活動(dòng)成像。在物鏡平均激光功率為10-85mW下,他們測量了清醒小鼠中V1神經(jīng)元的自發(fā)性和感覺誘發(fā)性的超閾值和亞閾值電位活動(dòng)。美國高速高分辨率多光子顯微鏡利用多光子顯微鏡,進(jìn)行無損、高分辨率的生物組織層析成像。

美國高速高分辨率多光子顯微鏡,多光子顯微鏡

比較兩表格中的相關(guān)參數(shù)可以看出,基于分子光學(xué)標(biāo)記的成像技術(shù)已經(jīng)在生物活檢和基因表達(dá)規(guī)律方面展示了較大的優(yōu)勢。例如,正電子發(fā)射斷層成像(PET)可實(shí)現(xiàn)對(duì)分子代謝的成像,空間分辨率∶1-2mm,時(shí)間分辨率;分鐘量級(jí)。與PET比較,光學(xué)成像的應(yīng)用場合更廣(可測量更多的參數(shù),請(qǐng)參見表1-1),且具有更高的時(shí)間分辨率(秒級(jí)),空間分辨率可達(dá)到微米。因此,二者相比,雖然光學(xué)成像在測量深度方面不及PET,但在測量參數(shù)種類與時(shí)空分辨率方面有一定優(yōu)勢。對(duì)于小動(dòng)物(如小白鼠)研究來說,光學(xué)成像技術(shù)可以實(shí)現(xiàn)小動(dòng)物整體成像和在體基因表達(dá)成像。例如,初步研究表明,熒光介導(dǎo)層析成像可達(dá)到近10cm的測量深度;基于多光子激發(fā)的顯微成像技術(shù)可望實(shí)現(xiàn)小鼠體內(nèi)基因表達(dá)的實(shí)時(shí)在體成像。

2020年,TonmoyChakraborty等人提出了一種加快2PM軸向掃描速度的方法[2]。在光學(xué)顯微鏡中,物鏡或樣品的緩慢軸向掃描速度限制了體積成像的速度。近年來,通過使用遠(yuǎn)程聚焦技術(shù)或電可調(diào)諧透鏡(ETL)已經(jīng)實(shí)現(xiàn)了快速軸向掃描;但是,遠(yuǎn)程聚焦中反射鏡的機(jī)械驅(qū)動(dòng)會(huì)限制軸向掃描速度,ETL會(huì)引入球面像差和更高階像差,從而無法進(jìn)行高分辨率成像。為了克服這些局限性,該組引入了一種新穎的光學(xué)設(shè)計(jì),能將橫向掃描轉(zhuǎn)換為可用于高分辨率成像的無球差的軸向掃描。該設(shè)計(jì)有兩種實(shí)現(xiàn)方式,第一種能夠執(zhí)行離散的軸向掃描,另一種能夠進(jìn)行連續(xù)的軸向掃描。具體裝置如圖3a所示,由兩個(gè)垂直臂組成,每個(gè)臂中都有一個(gè)4F望遠(yuǎn)鏡和一個(gè)物鏡。遠(yuǎn)程聚焦臂包含一個(gè)檢流掃描鏡(GSM)和一個(gè)空氣物鏡(OBJ1),另一個(gè)臂(稱為照明臂)由一個(gè)水浸物鏡(OBJ2)構(gòu)成。將這兩個(gè)臂對(duì)齊,以使GSM與兩個(gè)物鏡的后焦平面共軛。準(zhǔn)直的激光束被偏振分束器反射到遠(yuǎn)程聚焦臂中,GSM對(duì)其進(jìn)行掃描,進(jìn)而使得OBJ1產(chǎn)生的激光焦點(diǎn)進(jìn)行橫向掃描。精確測量細(xì)胞結(jié)構(gòu)與功能,多光子顯微鏡技術(shù)走在科技前沿。

美國高速高分辨率多光子顯微鏡,多光子顯微鏡

細(xì)胞在受到外界刺激時(shí),隨著刺激時(shí)間的增長,即使刺激繼續(xù)存在,Ca2+熒光信號(hào)不但不會(huì)繼續(xù)增強(qiáng),反而會(huì)減弱,直至恢復(fù)到未加刺激物時(shí)的水平。對(duì)于細(xì)胞受精過程中Ca2+熒光信號(hào)的變化情況,研究發(fā)現(xiàn),配了在粘著過程中,Ca2+熒光信號(hào)未發(fā)生任何變化,而配子之間發(fā)生融合作用時(shí),Ca2+熒光信號(hào)強(qiáng)度卻會(huì)出現(xiàn)一個(gè)不穩(wěn)定的峰值,并可持續(xù)幾分鐘。這些現(xiàn)象,對(duì)研究受精發(fā)育的早期信號(hào)及Ca2+在卵細(xì)胞和受精卵的發(fā)育過程中的作用具有重要的意義。在其它一些生理過程如細(xì)胞分裂、胞吐作用等,Ca2+熒光信號(hào)強(qiáng)度也會(huì)發(fā)生很的變化。多光子顯微鏡銷售渠道分析及建議。美國激光掃描多光子顯微鏡Ultima 2P Plus

OCT可以用于損傷修復(fù)監(jiān)測。Yeh等用OCT、多光子顯微鏡。美國高速高分辨率多光子顯微鏡

某種物質(zhì)能產(chǎn)生熒光,首要條件是分子必須具有吸收的結(jié)構(gòu),即生色團(tuán)(分子中具有吸收特征頻率的光能的基團(tuán))。其次,該物質(zhì)必須具有一定的量子產(chǎn)率和適宣的環(huán)境。我們把分子中發(fā)射熒光的基團(tuán)稱為熒光團(tuán)。熒光團(tuán)一定是生色團(tuán),但生色團(tuán)不一定是熒光團(tuán)。因?yàn)椋绻珗F(tuán)的量子產(chǎn)率等于零,就不能發(fā)射出熒光,處于激發(fā)態(tài)的分子,可以由許多方式(如熱,碰撞)把能量釋放出來,發(fā)射熒光只是其中的一種方式。此外,一種物質(zhì)吸收光的能力及量子產(chǎn)率又與物質(zhì)所處的環(huán)境密切相關(guān)。美國高速高分辨率多光子顯微鏡