德國(guó)全細(xì)胞膜片鉗參數(shù)

來(lái)源: 發(fā)布時(shí)間:2024-05-23

ePatch的一些設(shè)計(jì)亮點(diǎn)還包括:可以在軟件中用數(shù)據(jù)記錄實(shí)驗(yàn),不用帶專門(mén)的實(shí)驗(yàn)筆記本,也不用擔(dān)心這個(gè)筆記本上記錄的內(nèi)容找不到對(duì)應(yīng)的數(shù)據(jù),系統(tǒng)會(huì)一一對(duì)應(yīng)。電壓電流刺激模式的編輯就更蠢了。很多模塊可以直接拖拽,并配有樣圖,讓你對(duì)自己編輯的程序一目了然。實(shí)時(shí)全電池參數(shù)估計(jì),包括強(qiáng)大的密封電阻、膜電容、膜電阻等重要參數(shù)在線分析功能,包括電壓鉗模式下的I/Vgraph、eventdetection、FFT,電流鉗模式下的APthresholddetection、APfrequency、APslope等數(shù)據(jù)可以多種格式保存。如果你是程序員,可以支持使用Matlab進(jìn)行數(shù)據(jù)分析。如果沒(méi)有這樣的經(jīng)歷,就沒(méi)有問(wèn)題。數(shù)據(jù)可以保存為Clampfit,以便直接分析。膜片鉗,帶您進(jìn)入細(xì)胞膜電生理的奇妙世界!德國(guó)全細(xì)胞膜片鉗參數(shù)

德國(guó)全細(xì)胞膜片鉗參數(shù),膜片鉗

電壓鉗的缺點(diǎn)∶電壓鉗技術(shù)目前主要用于巨火細(xì)胞的全細(xì)胞電流研究,特別在分子克隆的卵母細(xì)胞表達(dá)電流的鑒定中發(fā)揮其它技術(shù)不能替代的作用。但也有其致命的弱點(diǎn)1、微電極需刺破細(xì)胞膜進(jìn)入細(xì)胞,以致造成細(xì)胞漿流失,破壞了細(xì)胞生理功能的完整性;2、不能測(cè)定單一通道電流。因?yàn)殡妷恒Q制的膜面積很大,包含著大量隨機(jī)開(kāi)放和關(guān)閉著的通道,而且背景噪音大,往往掩蓋了單一通道的電流。3、對(duì)體積小的細(xì)胞(如哺乳類***元,直徑在10-30μm之間)進(jìn)行電壓鉗實(shí)驗(yàn),技術(shù)上有更大的困難。由于電極需插入細(xì)胞,不得不將微電極的前列做得很細(xì),如此細(xì)的前列致使電極阻抗很大,常常是60~-8OMΩ或120~150MΩ(取決于不同的充灌液)。這樣大的電極阻抗不利于作細(xì)胞內(nèi)電流鉗或電壓鉗記錄時(shí)在短時(shí)間(μs)內(nèi)向細(xì)胞內(nèi)注入電流,達(dá)到鉗制膜電壓或膜電流之目的。再者,在小細(xì)胞上插入的兩根電極可產(chǎn)生電容而降低測(cè)量電壓電極的反應(yīng)能力。多通道膜片鉗電生理工具探索離子通道的舞動(dòng),膜片鉗是您的科學(xué)利器!

德國(guó)全細(xì)胞膜片鉗參數(shù),膜片鉗

早在膜片鉗誕生之前,20世紀(jì)50~60年代,Hodgkin與Hexley便發(fā)現(xiàn)并使用了電壓鉗技術(shù),他們通過(guò)雙電極電壓鉗在烏賊軸突上發(fā)現(xiàn)了動(dòng)作電位的離子機(jī)制,并因此獲得了諾貝爾生理醫(yī)學(xué)獎(jiǎng)。這也為后來(lái)膜片鉗的誕生奠定了基礎(chǔ)。于1976年,德國(guó)馬克斯普朗克生物物理化學(xué)研究所的Neher和Sakmann第1次于青蛙的肌細(xì)胞上,用玻璃電極吸下了一小片細(xì)胞膜,記錄導(dǎo)了皮安級(jí)的單通道離子電流,從而產(chǎn)生了膜片鉗技術(shù)。1980年,耶魯大學(xué)醫(yī)學(xué)院Sigworth等人在記錄電極內(nèi)增加了負(fù)壓吸引,實(shí)現(xiàn)了10-100GΩ的高阻抗封接,使得單電極可以同時(shí)實(shí)現(xiàn)鉗制電位和記錄單通道電流。1991年,Neher與Sakmann因?yàn)閷?duì)膜片鉗技術(shù)的突出貢獻(xiàn)獲得了諾貝爾生理醫(yī)學(xué)獎(jiǎng)。膜片鉗技術(shù),在人類對(duì)生理學(xué)的探究中,無(wú)異于一條道路,通往了名為細(xì)胞電生理的國(guó)度。膜片鉗技術(shù)也許某一天會(huì)被更便捷或更精確的技術(shù)取代,但其至今仍然是離子通道相關(guān)研究中使用蕞廣的技術(shù)。

在大多數(shù)膜片鉗實(shí)驗(yàn),要求所有實(shí)驗(yàn)儀器及設(shè)備均具有良好的機(jī)械穩(wěn)定性,以使微電極與細(xì)胞膜之間的相對(duì)運(yùn)動(dòng)盡可能小。防震工作臺(tái)放置倒置顯微鏡和與之固定連接的微操縱器,其他設(shè)備置于臺(tái)外。屏蔽罩由銅絲網(wǎng)制成,接地以防止周圍環(huán)境的雜散電場(chǎng)對(duì)膜片鉗放大器的探頭電路的干擾。儀器設(shè)備架要靠近工作臺(tái),便于測(cè)量?jī)x器與光學(xué)儀器配接。倒置顯微鏡是膜片鉗實(shí)驗(yàn)系統(tǒng)的主要光學(xué)部件,它不僅具有較好的視覺(jué)效果,便于將玻璃電極與細(xì)胞的頂部接觸,而且是借助移動(dòng)物鏡來(lái)實(shí)現(xiàn)聚焦,具有較好的機(jī)械穩(wěn)定性。視頻監(jiān)視器主要是用來(lái)監(jiān)視實(shí)驗(yàn)過(guò)程中的操作,特別是能將封接參數(shù)(如封接阻抗)與細(xì)胞的形態(tài)對(duì)應(yīng),以實(shí)現(xiàn)良好的封接。膜片鉗技術(shù)是用玻璃微電極吸管把只含1-3個(gè)離子通道、面積為幾個(gè)平方微米的細(xì)胞膜通過(guò)負(fù)壓吸引封接起來(lái)。

德國(guó)全細(xì)胞膜片鉗參數(shù),膜片鉗

高阻封接問(wèn)題的解決不僅改善了電流記錄性能,還隨之出現(xiàn)了研究通道電流的多種膜片鉗方式。根據(jù)不同的研究目的,可制成不同的膜片構(gòu)型。(1)細(xì)胞吸附膜片(cell-attachedpatch)將兩次拉制后經(jīng)加熱拋光的微管電極置于清潔的細(xì)胞膜表面上,形成高阻封接,在細(xì)胞膜表面隔離出一小片膜,既而通過(guò)微管電極對(duì)膜片進(jìn)行電壓鉗制,分辨測(cè)量膜電流,稱為細(xì)胞貼附膜片。由于不破壞細(xì)胞的完整性,這種方式又稱為細(xì)胞膜上的膜片記錄。此時(shí)跨膜電位由玻管固定電位和細(xì)胞電位決定。因此,為測(cè)定膜片兩側(cè)的電位,需測(cè)定細(xì)胞膜電位并從該電位減去玻管電位。從膜片的通道活動(dòng)看,這種形式的膜片是極穩(wěn)定的,因細(xì)胞骨架及有關(guān)代謝過(guò)程是完整的,所受的干擾小。滔博生物膜片鉗研究系統(tǒng)-細(xì)胞放電,組織切片放電,動(dòng)物放電!芬蘭細(xì)胞膜片鉗實(shí)驗(yàn)操作

準(zhǔn)確捕捉離子通道動(dòng)態(tài),膜片鉗技術(shù)助您一臂之力!德國(guó)全細(xì)胞膜片鉗參數(shù)

光遺傳學(xué)調(diào)控技術(shù)是近幾年正在迅速發(fā)展的一項(xiàng)整合了光學(xué)、基因操作技術(shù)、電生理等多學(xué)科交叉的生物技術(shù)。NatureMethods雜志將此技術(shù)評(píng)為"Methodoftheyear2010"[19];美國(guó)麻省理工學(xué)院科技評(píng)述(MITTechnologyReview,2010)在其總結(jié)性文章"Theyearinbiomedicine"中指出:光遺傳學(xué)調(diào)控技術(shù)現(xiàn)已經(jīng)迅速成為生命科學(xué),特別是神經(jīng)和心臟研究領(lǐng)域中熱門(mén)的研究方向之一。目前這一技術(shù)正在被全球幾百家從事心臟學(xué)、神經(jīng)科學(xué)和神經(jīng)工程研究的實(shí)驗(yàn)室使用,幫助科學(xué)家們深入理解大腦的功能,進(jìn)而為深刻認(rèn)識(shí)神經(jīng)、精神疾病、心血管疾病的發(fā)病機(jī)理并研發(fā)針對(duì)疾病干預(yù)和的新技術(shù)。德國(guó)全細(xì)胞膜片鉗參數(shù)