美國全自動多光子顯微鏡方案

來源: 發(fā)布時間:2024-07-01

當細胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續(xù)存在,Ca2+熒光信號不但不會繼續(xù)增強,反而會減弱,直至恢復到未加刺激物時的水平。對于細胞受精過程中Ca2+熒光信號的變化情況,研究發(fā)現(xiàn),配了在粘著過程中,Ca2+熒光信號未發(fā)生任何變化,而配子之間發(fā)生融合作用時,Ca2+熒光信號強度卻會出現(xiàn)一個不穩(wěn)定的峰值,并可持續(xù)幾分鐘。這些現(xiàn)象,對研究受精發(fā)育的早期信號及Ca2+在卵細胞和受精卵的發(fā)育過程中的作用具有重要的意義。在其它一些生理過程如細胞分裂、胞吐作用等,Ca2+熒光信號強度也會發(fā)生很的變化。實現(xiàn)細胞層面觀察,多光子顯微鏡技術助力醫(yī)學突破。美國全自動多光子顯微鏡方案

美國全自動多光子顯微鏡方案,多光子顯微鏡

雙光子熒光顯微成像主要有以下優(yōu)點∶a.光損傷小∶雙光子熒光顯微鏡使用可見光或近紅外光作為激發(fā)光,對細胞和組織的光損傷很小,適合于長時間的研究;b.穿透能力強∶相對于紫外光,可見光或近紅外光具有很強的穿透性,可以對生物樣品進行深層次的研究;c.高分辨率∶由于雙光子吸收截面很小P,只有在焦平面很小的區(qū)域內(nèi)可以激發(fā)出熒光,雙光子吸收局限于焦點處的體積約為λ范圍內(nèi);d.漂白區(qū)域很小,焦點以外不發(fā)生漂白現(xiàn)象。e.熒光收集率高。與共聚焦成像相比,雙光子成像不需要光學濾波器,提高了熒光收集率。收集效率提高直接導致圖像對比度提高。f.對探測光路的要求低。由于激發(fā)光與發(fā)射熒光的波長差值加大以及自發(fā)的三維濾波效果,多光子顯微鏡對光路收集系統(tǒng)的要求比單光子共焦顯微鏡低得多,光學系統(tǒng)相對簡單。g.適合多標記復合測量。許多染料熒光探針的多光子激發(fā)光譜要比單光子激發(fā)譜寬闊,這樣,可以利用單一波長的激發(fā)光同時激發(fā)多種染料,從而得到同一生命現(xiàn)象中的不同信息,便于相互對照、補充。美國多光子顯微鏡原理與傳統(tǒng)的熒光顯微鏡相比,多光子顯微鏡具有更好的深度穿透能力和較低光損傷性,可以觀察更深層的組織結(jié)構(gòu)。

美國全自動多光子顯微鏡方案,多光子顯微鏡

SternandJeanMarx在評論中說:祖家能夠在更為精細的層次研究樹突的功能,這在以前是完全不可能的。新的技術(如腦片的膜片鉗和雙光子顯微使人們對樹突的計算和神經(jīng)信號處理中的作用有了更好的理解。他們解釋了是樹突模式和形狀多樣性,及其獨特的電、及其獨特的電化學特征使神經(jīng)元完成了一系列的專門任務。雙光子與共聚焦在發(fā)育生物學中的應用雙光子∶每2.5分鐘掃描一次,觀察24小時,發(fā)育到桑椹胚和胚泡階段共聚焦∶每15分鐘掃描一次,觀察8小時后細胞分裂停止,不能發(fā)育到桑椹胚和胚泡階段共聚焦激發(fā)時的細胞存活率為多光子系統(tǒng)的10~20%。

細胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續(xù)存在,Ca2+熒光信號不但不會繼續(xù)增強,反而會減弱,直至恢復到未加刺激物時的水平。對于細胞受精過程中Ca2+熒光信號的變化情況,研究發(fā)現(xiàn),配了在粘著過程中,Ca2+熒光信號未發(fā)生任何變化,而配子之間發(fā)生融合作用時,Ca2+熒光信號強度卻會出現(xiàn)一個不穩(wěn)定的峰值,并可持續(xù)幾分鐘。這些現(xiàn)象,對研究受精發(fā)育的早期信號及Ca2+在卵細胞和受精卵的發(fā)育過程中的作用具有重要的意義。在其它一些生理過程如細胞分裂、胞吐作用等等,Ca2+熒光信號強度也會發(fā)生很強的變化。多光子顯微鏡在生物醫(yī)學研究中有廣泛的應用,可以觀察細胞內(nèi)的亞細胞結(jié)構(gòu)、蛋白質(zhì)分布、細胞活動等。

美國全自動多光子顯微鏡方案,多光子顯微鏡

比較兩表格中的相關參數(shù)可以看出,基于分子光學標記的成像技術已經(jīng)在生物活檢和基因表達規(guī)律方面展示了較大的優(yōu)勢。例如,正電子發(fā)射斷層成像(PET)可實現(xiàn)對分子代謝的成像,空間分辨率∶1-2mm,時間分辨率;分鐘量級。與PET比較,光學成像的應用場合更廣(可測量更多的參數(shù),請參見表1-1),且具有更高的時間分辨率(秒級),空間分辨率可達到微米。因此,二者相比,雖然光學成像在測量深度方面不及PET,但在測量參數(shù)種類與時空分辨率方面有一定優(yōu)勢。對于小動物(如小白鼠)研究來說,光學成像技術可以實現(xiàn)小動物整體成像和在體基因表達成像。例如,初步研究表明,熒光介導層析成像可達到近10cm的測量深度;基于多光子激發(fā)的顯微成像技術可望實現(xiàn)小鼠體內(nèi)基因表達的實時在體成像。利用多光子顯微鏡,進行組織內(nèi)深層結(jié)構(gòu)的無損成像。美國全自動多光子顯微鏡方案

精確觀測生物分子相互作用,多光子顯微鏡推動生命科學研究發(fā)展。美國全自動多光子顯微鏡方案

因斯蔻浦(上海)生物科技有限公司雙光子顯微鏡的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收2個長波長的光子,在經(jīng)過一個很短的所謂激發(fā)態(tài)壽命的時間后,發(fā)射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光子去激發(fā)熒光分子是相同的。雙光子激發(fā)需要很高的光子密度,為了不損傷細胞,雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,其脈沖寬度只有100飛秒,而其周期可以達到80至100兆赫茲。在使用高數(shù)值孔徑的物鏡將脈沖激光的光子聚焦時,物鏡的焦點處的光子密度是比較高的,雙光子激發(fā)只發(fā)生在物鏡的焦點上,所以雙光子顯微鏡不需要共聚焦***,提高了熒光檢測效率。美國全自動多光子顯微鏡方案