2020年,TonmoyChakraborty等人提出了加速2PM軸向掃描速度的方法[2]。在光學(xué)顯微鏡中,物鏡或樣品緩慢的軸向掃描速度限制了體成像的速度。近年來,通過使用遠(yuǎn)程聚焦技術(shù)或電調(diào)諧透鏡(ETL)已經(jīng)實現(xiàn)了快速軸向掃描。但遠(yuǎn)程對焦時對反射鏡的機(jī)械驅(qū)動會限制軸向掃描速度,ETL會引入球差和高階像差,無法進(jìn)行高分辨率成像。為了克服這些限制,該小組引入了一種新的光學(xué)設(shè)計,可以將橫向掃描轉(zhuǎn)換為無球面像差的軸向掃描,以實現(xiàn)高分辨率成像。有兩種方法可以實現(xiàn)這種設(shè)計。***個可以執(zhí)行離散的軸向掃描,另一個可以執(zhí)行連續(xù)的軸向掃描。如圖3a所示,特定裝置由兩個垂直臂組成,每個臂具有4F望遠(yuǎn)鏡和物鏡。遠(yuǎn)程聚焦臂由振鏡掃描鏡(GSM)和空氣物鏡(OBJ1)組成,另一個臂(稱為照明臂)由浸沒物鏡(OBJ2)組成。兩個臂對齊,使得GSM與兩個物鏡的后焦平面共軛。準(zhǔn)直后的激光束經(jīng)偏振分束器反射進(jìn)入遠(yuǎn)程聚焦臂,由GSM進(jìn)行掃描,使OBJ1產(chǎn)生的激光焦點可以進(jìn)行水平掃描。多光子顯微鏡市場集中,由于投產(chǎn)生產(chǎn)的成本較高,技術(shù)難度大,目前涌現(xiàn)的新企業(yè)不多。布魯克多光子顯微鏡原理
當(dāng)激光光束焦點的位置在鏡面上,此時被反射的激光在無限空間中成為準(zhǔn)直光束,并在OBJ2的焦平面上形成了一個激光光斑。同理,如果橫向掃描光束,則會形成遠(yuǎn)離傾斜鏡鏡面的焦點,這又導(dǎo)致返回的光束會聚或發(fā)散,進(jìn)而OBJ2能在軸向不同位置形成焦點,通過這種方式即能實現(xiàn)連續(xù)的軸向掃描。對于較小的傾斜角,聚焦沒有球差。該組在實驗中表征了這種將橫向掃描轉(zhuǎn)換為軸向掃描技術(shù)的光學(xué)性能,并使用它將光片顯微鏡的成像速度提升了一個數(shù)量級,從而可以在三個維度上量化快速的囊泡動力學(xué)。該組還演示了使用雙光子光柵掃描顯微鏡以12kHz進(jìn)行共振遠(yuǎn)程聚焦,該技術(shù)可對大腦組織和斑馬魚心臟動力學(xué)進(jìn)行快速成像,并具有衍射極限的分辨率。共聚焦多光子顯微鏡層析成像多光子顯微鏡,為疾病診斷和藥物研發(fā)提供強(qiáng)大支持。
多光子激發(fā)在紫外成像的優(yōu)勢在可見光脈沖中能得到紫外衍射的顯微觀察像。即使不使用紫外域光源、光學(xué)元件用可見光源、光學(xué)元件就能得到紫外光激勵的高空間分辨率圖像。多光子在生物成像中的優(yōu)勢在生物顯微鏡觀察方面,較早考慮的是不損壞生物本身的活性狀態(tài),維持水分、離子濃度、氧和養(yǎng)分的流通。在光觀察場合,無論是熱還是光子能量方面都必須停留在細(xì)胞不受損傷的照射量、光能量內(nèi)。多光子顯微鏡則能夠滿足此,而且還具有很多優(yōu)點。如三維分辨率、深度侵入、在散射效率、背景光、信噪比、控制等方面,均有以往激光顯微鏡不具備,或具有無法比擬的超越特性。
對于雙光子成像而言,離焦和近表面熒光激發(fā)是兩個比較大的深度限制因素,而對于三光子(3P)成像這兩個問題大大減小,但是三光子成像由于熒光團(tuán)的吸收截面比2P要小得多,所以需要更高數(shù)量級的脈沖能量才能獲得與2P激發(fā)的相同強(qiáng)度的熒光信號。功能性3P顯微鏡比結(jié)構(gòu)性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時采樣神經(jīng)元活動;需要更高的脈沖能量,以便在每個像素停留時間內(nèi)收集足夠的信號。復(fù)雜的行為通常涉及到大型的大腦神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)既具有局部的連接又具有遠(yuǎn)程的連接。要想將神經(jīng)元活動與行為聯(lián)系起來,需要同時監(jiān)控非常龐大且分布普遍的神經(jīng)元的活動,大腦中的神經(jīng)網(wǎng)絡(luò)會在幾十毫秒內(nèi)處理傳入的刺激,要想了解這種快速的神經(jīng)元動力學(xué),就需要MPM具備對神經(jīng)元進(jìn)行快速成像的能力??焖費PM方法可分為單束掃描技術(shù)和多束掃描技術(shù)。目前主要使用的多光子顯微鏡包括雙光子顯微鏡和三光子顯微鏡。
多光子顯微鏡因擁有較深的成像深度,和較高的對比度在生物成像中有著重要的意義,但是它通常需要較高的功率。結(jié)合時間上展開的超短脈沖可以實現(xiàn)超快的掃描速度和較深的成像深度,但是其本身所利用的近紅外波段的光會導(dǎo)致分辨率較低。清華大學(xué)陳宏偉教授和北京大學(xué)席鵬研究員合作研究,結(jié)合了結(jié)構(gòu)光成像和上轉(zhuǎn)化粒子,開發(fā)了一種基于多光子上轉(zhuǎn)化材料和時間編碼結(jié)構(gòu)光顯微鏡的高速超分辨成像系統(tǒng)(MUTE-SIM)。它可以實現(xiàn)50MHz的超高的掃描速度,并突破了衍射極限,實現(xiàn)了超分辨成像。相較于普通的熒光顯微鏡,該顯微鏡提升了,并且只需要較低的激發(fā)功率。這種超快、低功率、多光子的超分辨技術(shù),在分辨率高的生物深層組織成像上有著長遠(yuǎn)的應(yīng)用前景。多光子顯微鏡,實現(xiàn)無創(chuàng)、實時、動態(tài)的生物組織觀測。共聚焦多光子顯微鏡層析成像
多光子顯微鏡是一種強(qiáng)大的顯微鏡技術(shù),具有廣泛的應(yīng)用前景和發(fā)展?jié)摿Α2剪斂硕喙庾语@微鏡原理
對于雙光子(2P)成像而言,離焦和近表面熒光激發(fā)是兩個比較大的深度限制因素,而對于三光子(3P)成像這兩個問題大大減小,但是三光子成像由于熒光團(tuán)的吸收截面比2P要小得多,所以需要更高數(shù)量級的脈沖能量才能獲得與2P激發(fā)的相同強(qiáng)度的熒光信號。功能性3P顯微鏡比結(jié)構(gòu)性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時采樣神經(jīng)元活動;需要更高的脈沖能量,以便在每個像素停留時間內(nèi)收集足夠的信號。復(fù)雜的行為通常涉及到大型的大腦神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)既具有局部的連接又具有遠(yuǎn)程的連接。要想將神經(jīng)元活動與行為聯(lián)系起來,需要同時監(jiān)控非常龐大且分布普遍的神經(jīng)元的活動,大腦中的神經(jīng)網(wǎng)絡(luò)會在幾十毫秒內(nèi)處理傳入的刺激,要想了解這種快速的神經(jīng)元動力學(xué),就需要MPM具備對神經(jīng)元進(jìn)行快速成像的能力??焖費PM方法可分為單束掃描技術(shù)和多束掃描技術(shù)。布魯克多光子顯微鏡原理