在多光子顯微鏡(也稱為非線性或雙光子顯微鏡)中,以兩倍正常激發(fā)波長(zhǎng)照射樣品。更長(zhǎng)的波長(zhǎng)是有利的,因?yàn)樗鼈兛梢愿畹卮┩笜悠愤M(jìn)行3D成像,并且因?yàn)樗鼈儾粫?huì)損壞樣品,從而延長(zhǎng)樣品壽命。為了實(shí)現(xiàn)多光子激發(fā),照明光束在空間上聚焦(使用光學(xué)器件),同時(shí)使用高能短脈沖激發(fā)光束以提高兩個(gè)(或更多)光子同時(shí)到達(dá)同一位置(即熒光團(tuán)分子)的概率。多光子顯微技術(shù)的例子包括二次諧波產(chǎn)生(SHG)、三次諧波產(chǎn)生(THG)、相干反斯托克斯拉曼光譜(CARS)和受激發(fā)射耗盡(STED)顯微技術(shù)。由于這些技術(shù)中的每一種都使用脈沖激光器,因此選擇能夠比較大限度地減少脈沖色散的光學(xué)組件很重要,并且激光反射二向色鏡應(yīng)具有低GDD特性。多光子激光掃描顯微鏡是建立在激光掃描顯微鏡技術(shù)基礎(chǔ)上的實(shí)驗(yàn)方法,三維觀察上提供更的光學(xué)切片能力。美國(guó)靈長(zhǎng)類多光子顯微鏡三維分辨率
多束掃描技術(shù)可以同時(shí)對(duì)神經(jīng)元組織的不同位置進(jìn)行成像對(duì)兩個(gè)遠(yuǎn)距離(相距大于1-2mm)的成像部位,通常使用兩條單獨(dú)的路徑進(jìn)行成像;對(duì)于相鄰區(qū)域,通常使用單個(gè)物鏡的多光束進(jìn)行成像。多光束掃描技術(shù)必須特別注意激發(fā)光束之間的串?dāng)_問題,這個(gè)問題可以通過事后光源分離方法或時(shí)空復(fù)用方法來(lái)解決。事后光源分離方法指的是用算法來(lái)分離光束消除串?dāng)_;時(shí)空復(fù)用方法指的是同時(shí)使用多個(gè)激發(fā)光束,每個(gè)光束的脈沖在時(shí)間上延遲,這樣就可以暫時(shí)分離被不同光束激發(fā)的單個(gè)熒光信號(hào)。引入越多路光束就可以對(duì)越多的神經(jīng)元進(jìn)行成像,但是多路光束會(huì)導(dǎo)致熒光衰減時(shí)間的重疊增加,從而限制了區(qū)分信號(hào)源的能力;并且多路復(fù)用對(duì)電子設(shè)備的工作速率有很高的要求;大量的光束也需要更高的激光功率來(lái)維持近似單光束的信噪比,這會(huì)容易導(dǎo)致組織損傷。熒光多光子顯微鏡實(shí)驗(yàn)全球多光子顯微鏡主要消費(fèi)地區(qū)分析,包括消費(fèi)量及份額等。
當(dāng)細(xì)胞受到外界刺激時(shí),隨著刺激時(shí)間的增加,即使繼續(xù)刺激,Ca2+熒光信號(hào)也不會(huì)繼續(xù)增強(qiáng),反而會(huì)減弱,直至恢復(fù)到無(wú)刺激時(shí)的水平。對(duì)于細(xì)胞受精過程中Ca2+熒光信號(hào)的變化,發(fā)現(xiàn)粘附過程中Ca2+熒光信號(hào)沒有變化,但當(dāng)配子融合時(shí),Ca2+熒光信號(hào)強(qiáng)度出現(xiàn)一個(gè)不穩(wěn)定的峰值,持續(xù)數(shù)分鐘。這些現(xiàn)象對(duì)于研究受精發(fā)育的早期信號(hào)以及Ca2+在卵子和受精卵發(fā)育中的作用具有重要意義。在其他生理過程中,如細(xì)胞分裂和胞吐,Ca2+熒光信號(hào)的強(qiáng)度也會(huì)發(fā)生很大的變化。
對(duì)于雙光子成像而言,離焦和近表面熒光激發(fā)是兩個(gè)比較大的深度限制因素,而對(duì)于三光子(3P)成像這兩個(gè)問題大大減小,但是三光子成像由于熒光團(tuán)的吸收截面比2P要小得多,所以需要更高數(shù)量級(jí)的脈沖能量才能獲得與2P激發(fā)的相同強(qiáng)度的熒光信號(hào)。功能性3P顯微鏡比結(jié)構(gòu)性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時(shí)采樣神經(jīng)元活動(dòng);需要更高的脈沖能量,以便在每個(gè)像素停留時(shí)間內(nèi)收集足夠的信號(hào)。復(fù)雜的行為通常涉及到大型的大腦神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)既具有局部的連接又具有遠(yuǎn)程的連接。要想將神經(jīng)元活動(dòng)與行為聯(lián)系起來(lái),需要同時(shí)監(jiān)控非常龐大且分布普遍的神經(jīng)元的活動(dòng),大腦中的神經(jīng)網(wǎng)絡(luò)會(huì)在幾十毫秒內(nèi)處理傳入的刺激,要想了解這種快速的神經(jīng)元?jiǎng)恿W(xué),就需要MPM具備對(duì)神經(jīng)元進(jìn)行快速成像的能力??焖費(fèi)PM方法可分為單束掃描技術(shù)和多束掃描技術(shù)。多光子顯微鏡銷售渠道分析及建議。
針對(duì)雙光子熒光顯微鏡的特點(diǎn),從理論上分析雙光子成像特點(diǎn),并搭建一套時(shí)間、空間分辨率高,能實(shí)時(shí)、動(dòng)態(tài)、多參數(shù)測(cè)量的雙光子熒光顯微鏡系統(tǒng)。具體系統(tǒng)應(yīng)實(shí)現(xiàn)∶(1)能對(duì)不同染料的雙光子熒光進(jìn)行探測(cè);(2)用特定染料對(duì)樣品標(biāo)記以后,能實(shí)現(xiàn)雙光子熒光的三維成像;(3)通過實(shí)驗(yàn)的研究,改進(jìn)雙光子熒光顯微成像系統(tǒng);(4)在保證成像質(zhì)量的前提下,簡(jiǎn)化整個(gè)系統(tǒng),使得實(shí)驗(yàn)操作方便、安全。單光子激發(fā)熒光的過程,就是熒光分子吸收一個(gè)光子,從基態(tài)躍遷到激發(fā)態(tài),躍遷以后,能量較大的激發(fā)態(tài)分子,通過內(nèi)轉(zhuǎn)換把部分能量轉(zhuǎn)移給周圍的分子,自己回到比較低電子激發(fā)態(tài)的比較低振動(dòng)能級(jí)。處于比較低電子激發(fā)態(tài)的比較低振動(dòng)能級(jí)像在生物醫(yī)學(xué)光學(xué)成像研究中顯示了較大的優(yōu)勢(shì)。而在顯微成像中,雙光子熒光顯微鏡憑其獨(dú)有的優(yōu)點(diǎn),成為研究細(xì)胞結(jié)構(gòu)和功能檢測(cè)的重要工具。顯微鏡簡(jiǎn)史:從光到多光子顯微鏡。美國(guó)高速高分辨率多光子顯微鏡Ultima Investigator
多光子顯微鏡能提供多種對(duì)比度機(jī)制。美國(guó)靈長(zhǎng)類多光子顯微鏡三維分辨率
2020年,JianglaiWu等人提出提高2PM橫向掃描速率的裝置,稱為FACED(free-spaceangular-chirp-enhanceddelay)。圓柱透鏡將激光束一維聚焦,會(huì)聚角為Δθ。光束進(jìn)入到一對(duì)幾乎平行的高反射鏡中,其間距為S,偏角為α。經(jīng)過反射鏡多次反射后,激光脈沖被分成多個(gè)傳播方向不同的子脈沖(N=Δθ/α),脈沖間以2S/c的時(shí)間延遲(c,光速)回射。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個(gè)空間上分離且時(shí)間延遲的焦點(diǎn)陣列。然后將該模塊并入具有高速數(shù)據(jù)采集系統(tǒng)的標(biāo)準(zhǔn)雙光子熒光顯微鏡中。光源是具有1MHz重復(fù)頻率的920nm的激光器,通過FACED模塊可產(chǎn)生80個(gè)脈沖焦點(diǎn),其脈沖時(shí)間間隔為2ns。這些焦點(diǎn)是虛擬源的圖像,虛擬源越遠(yuǎn),物鏡處的光束尺寸越大,焦點(diǎn)越小。光束沿y軸比x軸能更好地充滿物鏡,從而導(dǎo)致x軸的橫向分辨率為0.82μm,y軸的橫向分辨率為0.35μm。美國(guó)靈長(zhǎng)類多光子顯微鏡三維分辨率