ultimainvestigator雙光子顯微鏡成像原理是什么

來源: 發(fā)布時間:2025-01-08

雙光子熒光顯微鏡是結(jié)合了激光掃描共聚焦顯微鏡和雙光子激發(fā)技術(shù)的一種新技術(shù)。雙光子激發(fā)的基本原理是:在高光子密度的情況下,熒光分子可以同時吸收2個長波長的光子,在經(jīng)過一個很短激發(fā)態(tài)后,發(fā)射出一個波長較短的光子;其效果和使用一個波長為長波長一半的光子去激發(fā)熒光分子是相同的。因其光損傷小、使得觀察熒光細胞成為可能。中國醫(yī)學科學院醫(yī)學實驗動物研究所-雙光子顯微鏡成像平臺借助于雙光子顯微鏡成像技術(shù)及不同轉(zhuǎn)基因小鼠開展對多種臟器的成像研究。以小鼠顱內(nèi)成像為優(yōu)勢,可觀察小鼠顱內(nèi)神經(jīng)細胞、小膠質(zhì)細胞/巨噬細胞、周細胞、血管、轉(zhuǎn)移瘤細胞、膠質(zhì)瘤細胞等的變化情況,在**學、神經(jīng)生物學、發(fā)育生物學、神經(jīng)退行性疾病等領(lǐng)域具有廣泛應(yīng)用。小鼠其它組織臟器,如脾、顱骨、股骨、胸骨等也可借助本平臺進行成像研究。雙光子顯微鏡使用方法是什么?ultimainvestigator雙光子顯微鏡成像原理是什么

ultimainvestigator雙光子顯微鏡成像原理是什么,雙光子顯微鏡

雙光子的來源:飛秒激光的雙光子吸收理論早在1931年就由諾貝爾獎獲得者MariaGoeppertMayer提出,并在30年后因為激光而得到實驗驗證,但WinfriedDenk用了近30年才發(fā)明了雙光子顯微鏡。要理解雙光子的技術(shù)挑戰(zhàn)和飛秒激光發(fā)揮的重要作用,首先要理解非線性過程。雙光子吸收相當于和頻產(chǎn)生的非線性過程,需要極高的電場強度,電場取決于聚焦光斑的大小和激光脈沖寬度。聚焦光斑越小,脈沖寬度越窄,雙光子吸收效率越高。對于衍射極限顯微鏡,聚焦在樣品上的光斑大小只與物鏡NA和激光波長有關(guān),所以關(guān)鍵變量只有激光脈沖寬度?;谝陨戏治觯軌蜉敵龈咧貜吐?100MHz)的超短脈沖(100fs量級)的飛秒激光已經(jīng)成為雙光子顯微鏡的標準激發(fā)光源。這再次顯示了雙光子顯微鏡的優(yōu)勢:雙光子吸收只能在焦平面形成,而在焦平面之外,由于光強較低,無法激發(fā),所以雙光子成像更清晰。美國熒光激光雙光子顯微鏡成像技術(shù)雙光子顯微鏡中,同樣每個時刻只有焦平面上一個點的信號被探測,并且連焦平面外的熒光信號也不會有。

ultimainvestigator雙光子顯微鏡成像原理是什么,雙光子顯微鏡

摻雜可以明顯影響碳點(CDs)的發(fā)射和激發(fā)特性,使雙光子碳點(TP-CDs)具有本征雙光子激發(fā)特性和605nm的紅光發(fā)射特性。在638nm激光照射下,除了長波激發(fā)和發(fā)射外,還可以實現(xiàn)活性氧(ROS)的產(chǎn)生,這為光動力技術(shù)提供了巨大的可能性。更重要的是,通過各種表征和理論模擬證實,摻雜誘導的N雜環(huán)在TP-CDs與RNA的親和力中起關(guān)鍵作用。這種親和力不僅為實現(xiàn)核仁特異性自我靶向提供了可能,而且通過ROS斷裂RNA鏈解離TP-CDs@RNA復合物,賦予治療過程中的熒光變異。TP-CDs結(jié)合了ROS的產(chǎn)生能力、光動力療法(PDT)過程中的熒光變化、長波激發(fā)和發(fā)射特性以及核仁的特異性自靶向性,可以認為是一種結(jié)合核仁動態(tài)變化實時處理的智能CDs。

雙光子熒光顯微鏡是激光掃描共聚焦顯微鏡和雙光子激發(fā)技術(shù)相結(jié)合的新技術(shù)。雙光子激發(fā)的基本原理是:在光子密度較高的情況下,熒光分子可以同時吸收兩個波長較長的光子,經(jīng)過短暫的所謂激發(fā)態(tài)壽命后,發(fā)射一個波長較短的光子;效果和用波長為長波長一半的光子激發(fā)熒光分子是一樣的。雙(多)光子成像的優(yōu)點是具有更深的組織穿透深度,紅外光可以在平面上探測到極限為1mm的組織區(qū)域;因為信號背景比高,所以具有更高的對比度;由于激發(fā)體積小,具有定點激發(fā)、光毒性小的特點;激發(fā)波長由紫外、可見光調(diào)整為紅外激發(fā),更加安全。雙光子顯微鏡可以在小鼠的的任何部位進行有生命體成像。

ultimainvestigator雙光子顯微鏡成像原理是什么,雙光子顯微鏡

雙光子顯微鏡的優(yōu)勢:在深度組織中以較長時間對活細胞成像,雙光子顯微鏡是當前之選。雙光子和共聚焦顯微鏡都是通過激光激發(fā)樣品中的熒光標記,使用探測器測量被激發(fā)的熒光。但是,共聚焦一般使用單模光纖耦合激光器,通過單光子激發(fā)熒光,而雙光子使用飛秒激光器,通過幾乎同時吸收兩個長波光子激發(fā)熒光。下面是兩種技術(shù)的對比圖。雙光子激發(fā)熒光的主要優(yōu)勢:雙光子比共聚焦使用的更長的波長,所以對組織的損傷更小且穿透更深。共聚焦的成像深度一般為100微米,雙光子則能達到250到500微米,甚至超過1毫米。另外,同時吸收兩個光子意味只有較強度聚焦點處能被激發(fā),所以不會損傷焦平面之外的組織,并且生成更清晰的圖像。如果已經(jīng)有了飛秒光,就可以幾套雙光子顯微鏡共享一臺,只需分光即可。布魯克雙光子顯微鏡熒光壽命計數(shù)

雙光子顯微鏡工作原理是利用兩個光子的能量相加達到熒光激發(fā)能量閾值,來激發(fā)樣品中熒光分子發(fā)出熒光信號。ultimainvestigator雙光子顯微鏡成像原理是什么

要想讓激發(fā)激光進入更深的層面,大致可從兩個方面入手,裝置優(yōu)化與標本改造。關(guān)于裝置優(yōu)化,我們可以把激光束變得更細,使能量更加集中,就能讓激光穿透更深。關(guān)于標本,其中影響光傳播的主要是物質(zhì)吸收和散射,解決這個問題,我們需要對樣本進行透明化處理。一種方法是運用某種物質(zhì)將標本浸泡,使其中的物質(zhì)(主要是脂質(zhì))被破壞或溶解。另一種方法是運用電泳將脂質(zhì)電解,讓標本“透明度”提高。高光子密度帶來的高能量容易損傷細胞,所以雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,其脈沖達到最大值所持續(xù)的周期只有十萬億分之一秒,而其頻率可以達到80至100兆赫,這樣即能達到雙光子激發(fā)的高光子密度要求,又能不損傷細胞,使掃描能更好地進行。ultimainvestigator雙光子顯微鏡成像原理是什么