移動目標(biāo)跟蹤哪里買

來源: 發(fā)布時間:2024-12-14

安全生產(chǎn)一直是發(fā)展過程中不變的話題。當(dāng)前,我國建筑行業(yè)正處于高速發(fā)展階段,不少建筑工地陸續(xù)開工,建筑行業(yè)安全也越發(fā)受到社會各界的關(guān)注。該行業(yè)以事故高發(fā)、危險系數(shù)高而聞名,建筑工人常常暴露于高處墜落、電氣和化學(xué)危險以及涉及重型機(jī)械和車輛的環(huán)境中。一般情況下,工地開工都會對工人進(jìn)行安全教育培訓(xùn),并且設(shè)有安全監(jiān)管人員,但純?nèi)肆ΡO(jiān)管,常常因?yàn)槭韬龃笠忉劤杀瘎?。加入科技的力量如監(jiān)控等設(shè)備來輔助人力監(jiān)管是一個很好的補(bǔ)充,但是傳統(tǒng)監(jiān)控也需要人守在屏幕前,也具有不小的弊端。于是,慧視光電基于AI圖像處理的監(jiān)控監(jiān)管方案就應(yīng)運(yùn)而生?;垡暪怆娀贏I圖像處理的監(jiān)控監(jiān)管方案能夠?qū)崿F(xiàn)安全生產(chǎn)。移動目標(biāo)跟蹤哪里買

目標(biāo)跟蹤

目標(biāo)跟蹤是在首幀中給定待跟蹤目標(biāo)的情況下,對目標(biāo)進(jìn)行特征提取,對感興趣區(qū)域進(jìn)行分析;然后在后續(xù)圖像中找到相似的特征和感興趣區(qū)域,并對目標(biāo)在下一幀中的位置進(jìn)行預(yù)測。作為計(jì)算機(jī)視覺領(lǐng)域的一個熱點(diǎn)研究方向,目標(biāo)跟蹤一直都是一項(xiàng)具有挑戰(zhàn)性的工作。目標(biāo)跟蹤技術(shù)在導(dǎo)彈制導(dǎo)、智能監(jiān)控系統(tǒng)、視頻檢索、無人駕駛、人機(jī)交互和工業(yè)機(jī)器人等領(lǐng)域具有重要的作用。從上世紀(jì)50年代目標(biāo)跟蹤的起源到現(xiàn)今,盡管已有大量的研究成果,但是在復(fù)雜條件下實(shí)現(xiàn)實(shí)時準(zhǔn)確的跟蹤依舊難以實(shí)現(xiàn)。移動目標(biāo)跟蹤哪里買全國產(chǎn)化處理板哪家好?

移動目標(biāo)跟蹤哪里買,目標(biāo)跟蹤

在智慧農(nóng)業(yè)領(lǐng)域可以分為人工干涉和無人值守2種。系統(tǒng)提供了良好的人機(jī)界面,用戶可以通過系統(tǒng)的視頻顯示區(qū)觀看攝像機(jī)攝制的現(xiàn)場視頻,此時,用戶可以人工通過系統(tǒng)提供的按鈕以各種方式控制云臺,即人工可以干涉監(jiān)控的過程。系統(tǒng)在大部分情況下處于無人值守的工作狀態(tài),當(dāng)監(jiān)控中心的計(jì)算機(jī)系統(tǒng)收到外場設(shè)備的預(yù)警信號后,將自動向攝像機(jī)云臺發(fā)出控制信號,控制攝像機(jī)將發(fā)生報警區(qū)域的圖像鎖定在監(jiān)視器上,并同時按系統(tǒng)的設(shè)定調(diào)整好焦距,視野大小等。然后系統(tǒng)自動轉(zhuǎn)入運(yùn)動檢測,檢測當(dāng)前區(qū)域是否有運(yùn)動目標(biāo),如果有運(yùn)動目標(biāo),則系統(tǒng)給出目標(biāo)的一般性描述,提交給目標(biāo)跟蹤模塊,對目標(biāo)進(jìn)行跟蹤。在這過程中,系統(tǒng)將作日志,記錄事故位置、時間等,同時對采集到的圖像作硬盤錄像。

由于侵入的目標(biāo)的形狀和顏色等特征是難以固定的,再加上監(jiān)控的場景,即背景往往比較復(fù)雜,只利用一個單幀圖像就找出移動的目標(biāo)是非常困難的。然而,目標(biāo)的運(yùn)動導(dǎo)致了其運(yùn)動時間內(nèi),監(jiān)控場景圖像的連續(xù)變化,所以,使用圖像序列分析往往是比較有效的,而且適合于低信噪比的情況。由于監(jiān)控系統(tǒng)通常監(jiān)控的視野比較大,系統(tǒng)設(shè)置的環(huán)境較為惡劣,圖像傳輸?shù)木嚯x較遠(yuǎn),從而導(dǎo)致圖像的信噪比不高,因此采用突出目標(biāo)的方法,需要在配準(zhǔn)的前提下進(jìn)行多幀能量積累和噪聲抑制。在該技術(shù)中,要研究的問題有,相鄰的兩幅或多幅圖像之間的關(guān)系是什么關(guān)系,是簡單的圖像差的值,還是多幅之間差的最大值,還是其他的與圖像減法之間的其他函數(shù)關(guān)系,是尤其需要研究的。在研究中,研究如何差,如何自動得到差圖像的分割門限,如何減小背景和突出目標(biāo)是研究的方向。成都慧視光電技術(shù)有限公司推出基于全國產(chǎn)化RK3588板的高性能圖像跟蹤板卡。

移動目標(biāo)跟蹤哪里買,目標(biāo)跟蹤

傳統(tǒng)意義上的根據(jù)視頻的變化率報警,隨著由于計(jì)算機(jī)的廣泛應(yīng)用和數(shù)字圖像的發(fā)展,由于其設(shè)置的不靈活、虛警率高、不抗干擾及接口等方面的原因,正慢慢地面臨淘汰;另外,在重要的場所,比如具有戰(zhàn)略意義的油田油庫,*倉庫,重要的機(jī)密場所、辦公地點(diǎn),水利大壩等等,傳統(tǒng)意義上的由人員操作控制鍵盤,鎖定目標(biāo),控制云臺的運(yùn)動來跟蹤目標(biāo)的模式,由于存在監(jiān)視范圍大、人易疲勞和連續(xù)反應(yīng)速度遲緩等方面的缺陷,這些領(lǐng)域?qū)ψ詣右曨l跟蹤的需求日益迫切?;垡暪怆妼K3588跟蹤板進(jìn)行二次開發(fā),實(shí)現(xiàn)AI智能應(yīng)用。河南安全目標(biāo)跟蹤

智能圖像處理板在邊海防中的應(yīng)用。移動目標(biāo)跟蹤哪里買

YOLO算法的關(guān)鍵技術(shù)在YOLO算法中,有幾個關(guān)鍵技術(shù)對其性能起著重要作用。首先是使用卷積神經(jīng)網(wǎng)絡(luò)提取圖像特征,其中引入了一些先進(jìn)的網(wǎng)絡(luò)結(jié)構(gòu),如Darknet。其次是使用AnchorBox來提高目標(biāo)定位的精度。此外,YOLO算法還引入了特征金字塔網(wǎng)絡(luò)和多尺度預(yù)測等技術(shù),以處理不同大小的目標(biāo)。YOLO算法在實(shí)時目標(biāo)檢測和跟蹤中的應(yīng)用YOLO算法在實(shí)時目標(biāo)檢測和跟蹤領(lǐng)域取得了明顯的成果。它不僅在檢測速度上遠(yuǎn)超傳統(tǒng)方法,而且在目標(biāo)定位和類別預(yù)測準(zhǔn)確性上也表現(xiàn)出色。因此,YOLO算法在許多應(yīng)用中得到了廣泛應(yīng)用,如視頻監(jiān)控、自動駕駛和物體識別等。移動目標(biāo)跟蹤哪里買