海南高分辨率增材制造Quantum X shape

來源: 發(fā)布時間:2024-10-22

增材制造(AdditiveManufacturing,AM)俗稱3D打印,融合了計算機輔助設計、材料加工與成型技術、以數(shù)字模型文件為基礎,通過軟件與數(shù)控系統(tǒng)將專門使用的金屬材料、非金屬材料以及醫(yī)用生物材料,按照擠壓、燒結、熔融、光固化、噴射等方式逐層堆積,制造出實體物品的制造技術。相對于傳統(tǒng)的、對原材料去除-切削、組裝的加工模式不同,是一種“自下而上”通過材料累加的制造方法,從無到有。這使得過去受到傳統(tǒng)制造方式的約束,而無法實現(xiàn)的復雜結構件制造變?yōu)榭赡?。近二十年來,AM技術取得了快速的發(fā)展,“快速原型制造(RapidPrototyping)”、“三維打印(3DPrinting)”、“實體自由制造(SolidFree-formFabrication)”之類各異的叫法分別從不同側面表達了這一技術的特點。增材制造技術可用于生產(chǎn)高精度的零件和工具。海南高分辨率增材制造Quantum X shape

海南高分辨率增材制造Quantum X shape,增材制造

增材制造技術是指基于離散-堆積原理,由零件三維數(shù)據(jù)驅動直接制造零件的科學技術體系?;诓煌姆诸愒瓌t和理解方式,增材制造技術還有快速原型、快速成形、快速制造、3D打印等多種稱謂,其內(nèi)涵仍在不斷深化,外延也不斷擴展,這里所說的“增材制造”與“快速成形”、“快速制造”意義相同。工業(yè)化的LSF-V大型激光立體成形裝備所謂數(shù)字化增材制造技術就是一種三維實體快速自由成形制造新技術,它綜合了計算機的圖形處理、數(shù)字化信息和控制、激光技術、機電技術和材料技術等多項高技術的優(yōu)勢,學者們對其有多種描述。西北工業(yè)大學凝固技術國家重點實驗室的黃衛(wèi)東教授稱這種新技術為“數(shù)字化增材制造”,中國機械工程學會宋天虎秘書長稱其為“增量化制造”,其實它就是不久前引起社會***關注的“三維打印”技術的一種。西方媒體把這種實體自由成形制造技術譽為將帶來“第三次工業(yè)**”的新技術。天津TPP增材制造3D微納加工增材制造的優(yōu)勢在于能夠將熱交換器芯和歧管作為單個整體部件生產(chǎn)。

海南高分辨率增材制造Quantum X shape,增材制造

3D打印高性能增材制造技術擺脫了模具制造這一明顯延長研發(fā)時間的關鍵技術環(huán)節(jié),兼顧高精度、高性能、高柔性,可以快速制造結構十分復雜的零件,為先進科研事業(yè)速研發(fā)提供了有力的技術手段。在微光學領域,Nanoscribe表示,其3D打印解決方案“破壞和打破以前復雜的工作流程,克服了長期的設計限制,并實現(xiàn)了先進的微光驅動的前所未有的應用。換句話說,PhotonicProfessionalGT系列與您的平均3D打印機不同,因此可用于創(chuàng)建在其他機器上無法生產(chǎn)的功能性光學產(chǎn)品。該系列與正確的材料和工藝相結合,據(jù)稱允許用戶“直接制造具有比標準制造方法,高形狀精度和光學平滑表面幾何約束的聚合物微光學部件”。

采用增材制造技術的情況下,導管的設計空間得以提升,例如可以設計為擁有螺旋形狀的結構,可以將導管橫截面設計為多邊形,也可以在部件內(nèi)集成多個導管,至少一個可具有圓形橫截面,還可以再導管內(nèi)表面上制造一組凸起的表面特征,這組凸起的表面特征可以延伸到導管的內(nèi)部區(qū)域中。與傳統(tǒng)設計及制造方式相比,3D打印導管可以設計為復雜的形狀、輪廓和橫截面,這是使用常規(guī)減法制造技術(例如,鉆孔)無法實現(xiàn)的。在設計時可以將冷卻部件設計成更接近理想的幾何形狀,從而改進流體系統(tǒng)的熱性能。另外,3D打印技術能夠有效控制導管的內(nèi)表面光潔度及其特征,起到影響流體的流動特性的作用,通過改變導管的內(nèi)表面特征,可以改變流動特性(例如湍流),這是傳統(tǒng)設計的導管所無法實現(xiàn)的。走進Nanoscribe在中國的子公司納糯三維科技(上海)有限公司,學習增材制造工藝原理。

海南高分辨率增材制造Quantum X shape,增材制造

Nanoscribe是一家德國雙光子增材制造系統(tǒng)制造商,2019年6月25日,南極熊從外媒獲悉,該公司近日推出了一款新型的機器QuantumX。該新的系統(tǒng)使用雙光子光刻技術制造納米尺寸的折射和衍射微光學元件,其尺寸可小至200微米。根據(jù)Nanoscribe的聯(lián)合創(chuàng)始人兼CSOMichaelThiel博士的說法,“Beers定律對當今的無掩模光刻設備施加了強大的限制,QuantumX采用雙光子灰度光刻技術,克服了這些限制,提供了前所未有的設計自由度和易用性,我們的客戶正在微加工的前沿工作。“Nanoscribe成立于卡爾斯魯厄理工學院,現(xiàn)在在上海設有子公司,在美國設有辦事處。該公司在財務和技術上獲得了蔡司的大力支持,蔡司是德國歷史非常悠久,規(guī)模比較大的光學系統(tǒng)制造商之一。納米標記系統(tǒng)基于雙光子吸收,這是一種分子被激發(fā)到更高能態(tài)的過程。為了使用雙光子工藝制造3D物體,使用含有單體和雙光子活性光引發(fā)劑的凝膠作為原料。將激光照射到光敏材料上以形成納米尺寸的3D打印物體,其中吸收的光的強度比較高。PhotonicProfessionalGT是Nanoscribe此前推出的一款產(chǎn)品,在科學研究中得到了廣的應用,并在哈佛大學納米系統(tǒng)中心,加州理工學院,倫敦帝國理工學院,蘇黎世聯(lián)邦理工大學和慶應義塾大學使用。Nanoscribe在中國的子公司納糯三維科技(上海)有限公司邀您一起探討增材制造技術的行業(yè)發(fā)展。山東微流道增材制造Photonic Professional GT

增材制造技術可用于生產(chǎn)復雜結構,傳統(tǒng)制造無法達到。海南高分辨率增材制造Quantum X shape

激光增材制造(LAM)屬于以激光為能量源的增材制造技術,能夠徹底改變傳統(tǒng)金屬零件的加工模式,主要分為以粉床鋪粉為技術特征的激光選區(qū)熔化(SLM)、以同步送粉為技術特征的激光直接沉積(LDMD)。目前LAM技術在航空、航天和醫(yī)療領域的應用發(fā)展特別迅速。鑒于相關領域主要涉及金屬結構制造,我們重點開展金屬LAM技術的發(fā)展研究。隨著金屬零件使用性能和結構復雜程度的提高,采用鑄造、鍛造等傳統(tǒng)工藝實施制造的難度、成本和周期迅速增加,而兼具技術先進性和資源經(jīng)濟性的LAM技術為高性能、復雜結構制造提供了新型解決方案:實現(xiàn)拓撲優(yōu)化結構、點陣結構、梯度材料結構、復雜內(nèi)部流道結構等不再困難,結構功能一體化、輕量化、韌性非常強、耐極端載荷、強散熱等新型結構得以應用,相應結構效能大幅提高。例如,美國通用電氣公司(GE)SLM航空發(fā)動機燃油噴嘴、北京航空航天大學LDMD飛機鈦合金框是典型應用案例。海南高分辨率增材制造Quantum X shape