不同分組的全基因組拷貝數(shù)變化的比較:**初目的:不同分組的拷貝數(shù)變異在染色體水平和染色體臂水平的展示和比較。應用:不同分組的全基因組拷貝數(shù)變化的比較,展示genome-wideDNAcopy-numberprofiles。不同染色體臂的變異與臨床表型息息相關。輸入數(shù)據(jù)格式:一個表征每個樣本的染色體變異(gain,balance,loss)的數(shù)值矩陣和樣本分組信息。或者拷貝數(shù)的原始結(jié)果,可處理成所需矩陣。參考文獻:(2)::本文計算出病人的拷貝數(shù)變異情況后,按照之前病人的分組比較了不同分組的染色體變異的異同,找到特定的染色體變異模式。確定了各組的特征,如lmonosomy2inPFB2,monosomy8inPFB3,monosomy3inPFB1,andgainof1qinPFB1.。 按照斯普林格學術規(guī)范化處理準則提供文稿同行**投稿前意見評估。上海公共數(shù)據(jù)庫挖掘數(shù)據(jù)科學服務
**初目的:對手上的**樣本(或病人)進行分型分析,期望找到不同的亞型,并對應不同的臨床特征??蓴U展應用到:所有樣本的亞型分析,用于樣本的特征分析。數(shù)據(jù)可用轉(zhuǎn)錄組、基因組、甲基化、蛋白質(zhì)組等。輸入數(shù)據(jù)格式:一個數(shù)值矩陣,行是基因或者其他特征,列是樣本。本分析要求樣本數(shù)要多,有利于亞型的分析。參考文獻:(2)::本文利用室管膜瘤病人的甲基化數(shù)據(jù),首先進行了tSNE分型,隨后又采用了新的方法spectralclustering進行分類分析,作者比較了兩種分類方法。使用spectralclustering的分類,鑒定了每一種**亞型的特異性表達模式。并且發(fā)現(xiàn)spectralclustering的分類和病人的臨床特征有關,從而提出一種新的室管膜瘤亞型,可用于臨床的篩選和檢測。 重慶臨床統(tǒng)計數(shù)據(jù)科學長期與交大、復旦、中科院、南大、藥科大等實驗室合作。
genomeview(基因瀏覽圖):genomeView是對基因組的可視化,可以直觀展示RNA-seq和ChIP-seq的信號,證實轉(zhuǎn)錄因子結(jié)合對基因轉(zhuǎn)錄的影響等等。數(shù)據(jù)要求:RNA-seq和ChIP-seq等數(shù)據(jù)。應用示例:文獻1:Genomic landscape and evolution of metastatic chromophobe renal cell carcinoma.(于2017年6月發(fā)表在JCI Insight.,影響因子6.041)。本文對轉(zhuǎn)移性腎嫌色細胞*進行了系統(tǒng)的基因組研究,文中繪制基因流覽圖對整個基因組數(shù)據(jù)進行了可視化。轉(zhuǎn)移性腎嫌色細胞*的基因組景觀和演化。
CNV(拷貝數(shù)變異分析):CNV(copy-numbervariant)是指拷貝數(shù)目變異,也稱拷貝數(shù)目多態(tài)性(copy-numberpolymorphism,CNP),是一個大小介于1kb至3MB的DN**段的變異,在人類及動植物基因組中***分布,主要表現(xiàn)為亞顯微水平的缺失或重復。CNV是近年來基因組學的研究熱點,是許多人類疾?。ㄈ?*、遺傳性疾病、心血管疾病等)發(fā)***展的重要分子機制之一。CNV的分析多見于易于發(fā)生染色體結(jié)構(gòu)變異的**研究中,也可用于復雜的神經(jīng)精神疾病的病因?qū)W研究,如智力障礙、帕金森病和孤獨癥等,也可用于其他疾病的易感性分析,如銀屑病、克羅恩病和一些自身免疫系統(tǒng)疾病。CNV研究既可用于單個的病例分析,找到遺傳高度異質(zhì)性的個體致病的遺傳學基礎,如智力低下的病因診斷;也可用于大量的病例一對照分析,患病群體的常見CNV變異研究,還可用于**家系的研究,如疾病相關新發(fā)CNV的研究。基本原理目前主流的CNV檢驗方法有RNA-seq和SNPArray,已有研究表明使用轉(zhuǎn)錄組數(shù)據(jù)分析到的CNV情況和。CNV分析的**步為篩選somaticCNVs。對正常人來說,基因組應該是二倍體的,所以凡是測到非2倍體的地方都是CNV。但是CNV本身就是人群遺傳物質(zhì)多樣性的體現(xiàn),所以對**樣本來說。 基因組數(shù)據(jù)全鏈條處理。
RoastROAST是一種差異表達分析方法,有助于提高統(tǒng)計能力、組織和解釋結(jié)果以及在不同實驗中的關聯(lián)表達模式,一般適用于microarray、RNA-seq的表達矩陣,用limma給全部基因做差異表達分析,不需要篩差異表達基因?;驹恚篟OAST是一種假設驅(qū)動的測試,對結(jié)果基因集做富集分析,富集分析考慮基因集中基因的方向性(上調(diào)或下調(diào))和強度(log2倍變化),判斷上/下調(diào)基因是否***富于集目標基因集;ROAST使用rotation,一種MonteCarlotechnology的多元回歸方法,適用于樣本數(shù)量較少的情況;roast檢驗一個geneset,對于復雜矩陣,使用mroast做multipleroasttests。富集分析結(jié)果用barcodeplot展示,使上/下調(diào)基因在目標基因集中的分布可視化。數(shù)據(jù)要求:表達矩陣。 云生物提供數(shù)據(jù)科學服務。北京組學數(shù)據(jù)處理數(shù)據(jù)科學
WGCNA其譯為加權(quán)基因共表達網(wǎng)絡分析。上海公共數(shù)據(jù)庫挖掘數(shù)據(jù)科學服務
STEM基因表達趨勢分析數(shù)據(jù)要求表達譜芯片或測序數(shù)據(jù)(已經(jīng)過預處理)下游分析得到***富集的時間表達模式之后的分析有:1.時間表達模式中基因的功能富集2.時間表達模式中基因表達與性狀之間的相關性挖掘模塊的關鍵信息:1.找到時間表達模式中的**基因2.利用關系預測該時間表達模式功能文獻1:DynamicEBF1occupancydirectssequentialepigeneticandtranscriptionaleventsinB-cellprogramming(于2018年1月發(fā)表在GenesDev.,影響因子)EBF1動態(tài)占據(jù)在B細胞中對序列表觀遺傳和轉(zhuǎn)錄過程的影響該文獻采用基因表達趨勢分析,探尋了EBF1誘導前后25kb轉(zhuǎn)錄起始位點內(nèi)基因轉(zhuǎn)錄水平的差異,來尋找EBF1對特定功能基因的影響以及造成影響的時間節(jié)點。文獻2:ComprehensivetranscriptionalprofilingofNaCl-stressedArabidopsisrootsrevealsnovelclassesofresponsivegenes(于2016年10月發(fā)表在BMCPlantBiol.,影響因子)該文獻采用基因表達趨勢分析,研究了高濃度鹽水作用不同時間下擬南芥根的基因表達差異,來探尋在遇到高濃度鹽水時擬南芥在基因?qū)用嫔系膽獙Ψ绞健?上海公共數(shù)據(jù)庫挖掘數(shù)據(jù)科學服務