動脈器官芯片常見問題

來源: 發(fā)布時間:2021-11-04

微物理系統(tǒng)(MPS)又稱OrganonChip(OOC)、器官芯片,旨在表征人體組織的結(jié)構(gòu)和功能特征。與傳統(tǒng)的二維平皿細(xì)胞培養(yǎng)相比,MPS可以利用多種細(xì)胞類型,在三維支架中培養(yǎng),在灌注狀態(tài)下模擬組織中的血流。它們可用于臨床前藥物吸收、分布、代謝和排泄(ADME)研究,以獲得相關(guān)的人體數(shù)據(jù),并有助于告知劑量方案和有效藥物濃度等參數(shù)。MPS包含一系列平臺,這些平臺通過使用微工程技術(shù)(通常與3D微環(huán)境結(jié)合使用)來模仿組織功能的各個方面。此類系統(tǒng)已報告為3D球體,類器guan,器官芯片,靜態(tài)微圖案技術(shù)和非物理芯片模型。目前使用的主要器官芯片上的官包括心臟、腎臟和肺方向。動脈器官芯片常見問題

動脈器官芯片常見問題,器官芯片

器官芯片技術(shù)也叫做微生理系統(tǒng),是一種細(xì)胞培養(yǎng)與微流控技術(shù)的結(jié)合,能夠精確控制細(xì)胞培養(yǎng)所需的環(huán)境,如流體剪切力、分子濃度梯度及多器guan相互作用等,能夠在體外真實(shí)模擬人體組織的復(fù)雜結(jié)構(gòu)、組織微環(huán)境以及各項生理功能。器官芯片模型的可用性為理解人類疾病的發(fā)病機(jī)制提供了大量機(jī)會,并為篩選藥物提供了潛在的更好模型,因?yàn)檫@些模型利用了類似于人體的動態(tài)3D環(huán)境。盡管器官芯片模型存在局限性,但新技術(shù)的出現(xiàn)提高了其轉(zhuǎn)化研究和精確醫(yī)學(xué)的能力。英國CNBio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。高通量器官芯片技術(shù)近期在血腦屏障(BBB-on-chips)的器官芯片模型的開發(fā)方面取得的進(jìn)展以及仍然面臨的挑戰(zhàn)。

動脈器官芯片常見問題,器官芯片

器官芯片(OOC)模型可以作為單個系統(tǒng)或模擬器guan相互交流的連接單元存在。MPS建立通過傳統(tǒng)二維實(shí)驗(yàn)使用的概念上,并包括改善生理相關(guān)性的設(shè)計特征。器官芯片模型和其他MPS的應(yīng)用程序多種多樣-就像它們的制造和設(shè)計方法一樣。已為大多數(shù)組織類型開發(fā)了類器guan,器官芯片模型和其他MPS,并提供了前所未有的進(jìn)行毒性測試,個性化藥物以及PK/PD和疾病機(jī)制研究的機(jī)會。考慮到它們在藥物開發(fā)中的重要性,已大力致力于開發(fā)吸收和代謝模型。英國CNBio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。

器官芯片大規(guī)模使用還需解決多個方面的難題,包括原代細(xì)胞的獲取、特制培養(yǎng)輔助試劑的商品化,以及芯片耗材成本的降低,實(shí)驗(yàn)?zāi)P筒僮鞯暮喕?。除了用于藥物開發(fā),器官芯片還可在多個領(lǐng)域發(fā)揮 無可比擬的作用,包括環(huán)境毒理學(xué)評估,化妝品有效和安全性評估等。器官芯片的一個主要應(yīng)用包括體外評估藥物毒性,毒性是候選藥物失敗以及上市藥物退市的主要原因,涉及到的靶組織主要包括肝臟、心臟等組織,目前開發(fā)的器官芯片模型在這些組織中具已經(jīng)具備成熟的毒性評估模型。英國CN Bio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。器官芯片因在預(yù)測人體對新型藥物反應(yīng)的建模、測試等方面的極大前景,逐漸成為科研界的研究熱點(diǎn)。

動脈器官芯片常見問題,器官芯片

我們所有的微生理(MPS)耗材板與CNBioInnovations開發(fā)的PhysioMimix桌面型器官芯片系統(tǒng)配套使用。MPS耗材板的每個孔都是隔離的液流系統(tǒng),可用于同時進(jìn)行多個平行的實(shí)驗(yàn)。PhysioMimix器官芯片允許科學(xué)家在整個實(shí)驗(yàn)過程中取樣進(jìn)行分析,提供數(shù)據(jù)和實(shí)驗(yàn)進(jìn)度的實(shí)時監(jiān)控。監(jiān)測包括生物標(biāo)記物分析、細(xì)胞形態(tài)可視化成像、細(xì)胞遷移和蛋白質(zhì)標(biāo)記物定位;但重要的是,實(shí)驗(yàn)可以繼續(xù)進(jìn)行。PhysioMimix器官芯片支持使用微流體將兩個或多個組織系統(tǒng)連接起來的使用案例。這類實(shí)驗(yàn)提供了非常有價值的數(shù)據(jù),可揭示多個器guan如何相互作用和對刺激的反應(yīng)。CN Bio 利用我們灌流器官芯片PhysioMimix 平臺開發(fā)了一種創(chuàng)新的NAFLD/NASH 實(shí)驗(yàn)?zāi)P汀n惼鞴傩酒乃行畔?/p>

CN Bio的器官芯片產(chǎn)品受益于MIT(麻省理工學(xué)院)和其他先進(jìn)學(xué)術(shù)團(tuán)體的生物工程**開發(fā)的知識產(chǎn)權(quán)。動脈器官芯片常見問題

我們展示了多器guan腸肝MPS-TL6,由MPS器官芯片平臺英國CN-Bio的PhysioMimix多器guan設(shè)備控制,可以概括抗yan藥雙氯芬酸的藥代動力學(xué)。PHHs在肝臟MPS的3D工程支架中培養(yǎng),然后加入腸MPSTranswells孔,后者是腸上皮細(xì)胞和杯狀細(xì)胞的混合物,形成屏障。在給藥實(shí)驗(yàn)期間,肝功能標(biāo)志物CYP3A4、白蛋白和尿素維持在MPS-TL6中。腸屏障的完整性也通過TEER測量得到了證實(shí)。雙氯芬酸被添加到腸器官芯片Transwells的頂端,在那里它通過屏障滲透,主要由肝臟代謝。我們證明了腸道屏障對雙氯芬酸的生物利用度的影響,以及隨后通過PHHs消除。通過在MPS-TL6中培養(yǎng)單個和多個器guan的組織模型,我們可以評估肝臟、腸道和聯(lián)合培養(yǎng)時對代謝產(chǎn)物產(chǎn)生的貢獻(xiàn)。值得注意的是,在共培養(yǎng)的腸-肝MPS中產(chǎn)生的代謝物水平較高,大于單個器guan器官芯片的總和,表明器guan-器guan串?dāng)_促進(jìn)組織功能。動脈器官芯片常見問題

上海曼博生物醫(yī)藥科技有限公司主要經(jīng)營范圍是醫(yī)藥健康,擁有一支專業(yè)技術(shù)團(tuán)隊和良好的市場口碑。公司自成立以來,以質(zhì)量為發(fā)展,讓匠心彌散在每個細(xì)節(jié),公司旗下血小板裂解液,WB自動孵育系統(tǒng),微流控器官芯片,藍(lán)牙無線標(biāo)簽機(jī)深受客戶的喜愛。公司從事醫(yī)藥健康多年,有著創(chuàng)新的設(shè)計、強(qiáng)大的技術(shù),還有一批**的專業(yè)化的隊伍,確保為客戶提供良好的產(chǎn)品及服務(wù)。曼博生物憑借創(chuàng)新的產(chǎn)品、專業(yè)的服務(wù)、眾多的成功案例積累起來的聲譽(yù)和口碑,讓企業(yè)發(fā)展再上新高。