河北導電石墨烯復合材料產(chǎn)品介紹

來源: 發(fā)布時間:2024-05-11

 石墨烯的研究熱潮也吸引了國內(nèi)外材料制備研究的興趣,石墨烯材料的制備方法已報道的有:機械剝離法、化學氧化法、晶體外延生長法、化學氣相沉積法、有機合成法和碳納米管剝離法等。1、微機械剝離法2004年,Geim等***用微機械剝離法,成功地從高定向熱裂解石墨(highlyorientedpyrolyticgraphite)上剝離并觀測到單層石墨烯。Geim研究組利用這一方法成功制備了準二維石墨烯并觀測到其形貌,揭示了石墨烯二維晶體結(jié)構(gòu)存在的原因。微機械剝離法可以制備出高質(zhì)量石墨烯,但存在產(chǎn)率低和成本高的不足,不滿足工業(yè)化和規(guī)?;a(chǎn)要求,目前只能作為實驗室小規(guī)模制備。2、化學氣相沉積法化學氣相沉積法(ChemicalVaporDeposition,CVD)***在規(guī)?;苽涫┑膯栴}方面有了新的突破。CVD法是指反應物質(zhì)在氣態(tài)條件下發(fā)生化學反應,生成固態(tài)物質(zhì)沉積在加熱的固態(tài)基體表面,進而制得固體材料的工藝技術(shù)。麻省理工學院的Kong等、韓國成均館大學的Hong等和普渡大學的Chen等在利用CVD法制備石墨烯。他們使用的是一種以鎳為基片的管狀簡易沉積爐,通入含碳氣體,如:碳氫化合物,它在高溫下分解成碳原子沉積在鎳的表面,形成石墨烯,通過輕微的化學刻蝕,使石墨烯薄膜和鎳片分離得到石墨烯薄膜。氧化石墨烯分散液(SE3122、SE3522)。河北導電石墨烯復合材料產(chǎn)品介紹

河北導電石墨烯復合材料產(chǎn)品介紹,石墨烯復合材料

在橡膠類體系中,需要同時兼顧材料的強度與韌性,因此對GO的分散性和GO與橡膠基體間的相互作用要求更高。主要通過將GO與橡膠分子交聯(lián),或?qū)O改性,增強其對橡膠分子的親和性來實現(xiàn)47,48。Liu等42以極性XNBR為載體,將GO轉(zhuǎn)移到SBR基體中。GO懸浮液與XNBR膠乳混合,然后將其加入到SBR膠乳中,再進行膠乳共凝聚。用X射線衍射(XRD)和掃描電子顯微鏡(SEM)對填料在SBR基體中的分散進行了表征并研究了納米復合材料的力學性能。研究發(fā)現(xiàn),XNBR可以通過氫鍵與GO相互作用,并與SBR形成化學交聯(lián)。因此XNBR可以防止SBR基體中GO片層聚集,改善GO和SBR的相互作用。圖5.1中描述了XNBR對GO和SBR相互作用的影響。福建附近石墨烯復合材料什么價格石墨烯抗靜電阻燃復合材料高氧指數(shù),以及良好的流動性與力學性能。

河北導電石墨烯復合材料產(chǎn)品介紹,石墨烯復合材料

許多對聚合物/碳納米管納米復合材料的研究目的在于開發(fā)和利用碳納米管出色的力學性能,同時對聚合物基體引入一些新的性能,比如導電性、導熱性等。但是,盡管許多工作集中在聚合物/碳納米管納米復合材料的研究上,許多問題仍然存在。相比于碳納米管,制備基于石墨烯的結(jié)構(gòu)和功能體系更加可行,這是因為石墨烯具有更大的比表面積,更強的界面結(jié)合力,以及同樣出色的物理性能。完美石墨烯的楊氏模量和斷裂強度高達1TPa和130GPa[41],而制備復合材料**常用的改性及還原石墨烯的楊氏模量也可達到250GPa[57,58],高出一般的聚合物2~3個數(shù)量級,因此,在聚合物中加入改性或還原石墨烯同樣能有效地增強聚合物的力學性能。

利用原位聚合法制備了氧化石墨烯/聚乙烯導電復合材料,結(jié)果發(fā)現(xiàn)當石墨烯含量為2wt.%時,復合材料的導電率達到比較高2.9x10-2s/cm,作者認為氧化石墨烯在基體中分散性較好且形成了有效的導電網(wǎng)絡(luò)。用格氏試劑將GO表面的羥基、環(huán)氧基和羧基格氏化,然后與TiCl4反應可制備Ziegler-Natta催化劑。利用改性過的催化劑,原位催化丙烯在GO表面聚合可生成聚丙烯-g-GO(PP-g-GO)復合材料11。該復合材料在PP樹脂中可均勻分散,減少了GO在PP中的團聚。PP-g-GO在高溫(190°C)加工過程中,GO被初步還原,從而提高了復合材料的導電性。通過這種原位聚合的方式,1.52wt.%的GO添加量即可使復合材料達到導靜電的水平(10-6S/m)。常州第六元素建有自動控制規(guī)?;a(chǎn)線,市場占有率居國內(nèi)外前列。

河北導電石墨烯復合材料產(chǎn)品介紹,石墨烯復合材料

目前鋰離子電池的負極材料以石墨為主,現(xiàn)階段幾乎達到其理論容量值,因此高容量負極材料引起了當前鋰離子電池中的研究熱點。負極材料,應該具有良好的鋰離子和電子傳輸能力。石墨烯表面可以存儲鋰離子,具有高的電子遷移能力。與此同時石墨烯作為負極材料還可以縮短鋰離子的傳輸路徑。Bulusheva等將氧化石墨烯置于濃硫酸中加熱,之后在惰性氣體中進行高溫煅燒得到表面有2-5 nm孔的石墨烯,該石墨烯材料具有良好的倍率性能[2]。Jiang等將氧化石墨烯水熱處理后再通過強堿制備得到多孔石墨烯,在0.05 C 倍率下首圈放電容量可達到2207 mAh g-1;在高倍率5 C下容量可達到220 mAh g-1[3]。華南理工大學的Lian等[4]將氧化石墨烯置于高溫煅燒爐中在惰性氣體的保護下還原得到層數(shù)少、缺陷少、雜質(zhì)少的高質(zhì)量石墨烯,并將其用作鋰離子電池負極材料。玻纖增強復合料材質(zhì)地輕、流動性好,良好的加工性能。江蘇石墨烯復合材料粉體

氧化石墨易于接枝改性,可與復合材料進行原位復合。河北導電石墨烯復合材料產(chǎn)品介紹

氧化石墨烯可以用于提高環(huán)氧樹脂、聚乙烯、聚酰胺等聚合物的導熱性能。通常而言,碳基填料可以提高聚合物的熱導率,但無法像提高導電性那么明顯,甚至低于有效介質(zhì)理論。其原因可能是因為熱能傳遞主要是以晶格振動的形式,填料與聚合物之間以及填料與填料之間較弱的振動模式也會增加熱阻。液態(tài)硅橡膠(LSR)廣泛應用于電子器件的密封。然而,在一般情況下,LSR的導熱性較差使得涂層或盆栽器件散熱過量,從而導致器件損壞或壽命降低。為了緩解這一現(xiàn)狀,Mu等人研究了寬體積范圍內(nèi)填充ZnO的硅橡膠的熱導率,并研究了形成的導電粒子鏈對熱導率的影響。同時也研究了Al2O3用量對硅橡膠導熱性能和力學性能的影響。 河北導電石墨烯復合材料產(chǎn)品介紹