從標(biāo)準(zhǔn)化到定制化:非標(biāo)鋰電池自動(dòng)化設(shè)備的發(fā)展路徑
鋰電池自動(dòng)化設(shè)備生產(chǎn)線的發(fā)展趨勢(shì)與技術(shù)創(chuàng)新
鋰電池后段智能制造設(shè)備的環(huán)保與可持續(xù)發(fā)展
未來(lái)鋰電池產(chǎn)業(yè)的趨勢(shì):非標(biāo)鋰電池自動(dòng)化設(shè)備的作用與影響
非標(biāo)鋰電池自動(dòng)化設(shè)備與標(biāo)準(zhǔn)設(shè)備的比較:哪個(gè)更適合您的業(yè)務(wù)
非標(biāo)鋰電池自動(dòng)化設(shè)備投資回報(bào)分析:特殊定制的成本效益
鋰電池處理設(shè)備生產(chǎn)線的維護(hù)與管理:保障長(zhǎng)期穩(wěn)定運(yùn)行
鋰電池處理設(shè)備生產(chǎn)線的市場(chǎng)前景:投資分析與預(yù)測(cè)
新能源鋰電設(shè)備的安全標(biāo)準(zhǔn):保障生產(chǎn)安全的新要求
新能源鋰電設(shè)備自動(dòng)化:提高生產(chǎn)效率與產(chǎn)品一致性
(1)將GO作為熒光共振能量轉(zhuǎn)移的受體,構(gòu)建熒光共振能量轉(zhuǎn)移型氧化石墨烯生物傳感器,用于檢測(cè)各種生物分子。(2)可以將一些抗體鍵合在GO表面,構(gòu)建成抗體型氧化石墨烯傳感器,通常是將GO作為熒光共振能量轉(zhuǎn)移或化學(xué)發(fā)光共振能量轉(zhuǎn)移的受體,以此來(lái)檢測(cè)抗原物質(zhì);或者利用GO比表面積較大能結(jié)合更多抗體的特點(diǎn),將檢測(cè)信號(hào)進(jìn)行進(jìn)一步放大。(3)構(gòu)建多肽型氧化石墨烯傳感器。因?yàn)镚O是一種邊緣含有親水基團(tuán)(-COOH,-OH及其他含氧基團(tuán))而基底具有高疏水性的兩性物質(zhì),當(dāng)多肽與GO孵育時(shí),多肽的芳環(huán)和其他疏水性殘基與GO的疏水性基底堆積,同時(shí)二者部分殘基之間也會(huì)存在靜電作用,這樣多肽組裝在GO上形成了多肽型氧化石墨烯傳感器。當(dāng)多肽被熒光基團(tuán)標(biāo)記時(shí),二者之間發(fā)生熒光共振能量轉(zhuǎn)移后,GO使熒光發(fā)生猝滅。氧化石墨是由牛津大學(xué)的化學(xué)家本杰明·C·布羅迪在1859年用氯酸鉀和濃硝酸混合溶液處理石墨的方法制得。杭州多層氧化石墨
氧化石墨烯(GO)的比表面積很大,而厚度只有幾納米,具有兩親性,表面的各種官能團(tuán)使其可與生物分子直接相互作用,易于化學(xué)修飾,同時(shí)具有良好的生物相容性,超薄的GO納米片很容易組裝成紙片或直接在基材上進(jìn)行加工。另外,GO具有獨(dú)特的電子結(jié)構(gòu)性能,可以通過(guò)熒光能量共振轉(zhuǎn)移和非輻射偶極-偶極相互作用能有效猝滅熒光體(染料分子、量子點(diǎn)及上轉(zhuǎn)換納米材料)的熒光。這些特點(diǎn)都使GO成為制作傳感器極好的基本材料[74-76]。Arben的研究中發(fā)現(xiàn),將CdSe/ZnS量子點(diǎn)作為熒光供體,石墨、碳纖維、碳納米管和GO作為熒光受體,以上幾種碳材料對(duì)CdSe/ZnS量子點(diǎn)的熒光淬滅效率分別為66±17%、74±7%、71±1%和97±1%,因此與其他碳材料相比,GO具有更好的熒光猝滅效果[77]。烏蘭察布關(guān)于氧化石墨石墨原料片徑大小、純度高低等以及合成方法不同,因此導(dǎo)致所合成出來(lái)的GO片的大小有差異。
在氧化石墨烯的納米孔道中,分布著氧化區(qū)域和納米sp2雜化碳區(qū)域,水分子在通過(guò)氧化區(qū)域時(shí)能夠與含氧官能團(tuán)形成氫鍵,從而增加了水流動(dòng)阻力,而在雜化碳區(qū)域水流阻力很小。芳香碳網(wǎng)中形成的大多數(shù)通路被含氧官能團(tuán)有效阻擋,從而分離海水中Na+和Cl-等小分子物質(zhì)12,13。相比于其他納米材料,GO為快速水輸送提供了較多優(yōu)越性能,如光滑無(wú)摩擦的表面,超薄的厚度和超高的機(jī)械強(qiáng)度,所有這些特性都提高了水的滲透性。前超濾膜、納濾膜、反滲透膜等膜技術(shù),已經(jīng)成功地應(yīng)用到水處理的各個(gè)領(lǐng)域,引起越來(lái)越多的企業(yè)家和科學(xué)家的關(guān)注8-11。GO薄膜在海水淡化領(lǐng)域的應(yīng)用主要是去除海水中的鹽離子,探究GO薄膜的離子傳質(zhì)行為具有更為重要的實(shí)用意義。
多層氧化石墨烯(GO)膜在不同pH水平下去除水中有機(jī)物質(zhì)的系統(tǒng)性能評(píng)價(jià)和機(jī)理研究。該研究采用逐層組裝法制備了PAH/GO雙層膜,對(duì)典型單價(jià)離子(Na+,Cl-)和多價(jià)離子(SO42-,Mg2+)以及有機(jī)染料(亞甲藍(lán)MB,羅丹明R-WT)和藥物和個(gè)人護(hù)理品(三氯生TCS,三氯二苯脲TCC)在反滲透膜系統(tǒng)中通過(guò)GO膜的行為進(jìn)行研究。結(jié)果發(fā)現(xiàn),在pH=7時(shí),無(wú)論其電荷、尺寸或疏水性質(zhì)如何,GO膜能夠高效去除多價(jià)陽(yáng)離子/陰離子和有機(jī)物,但對(duì)于單價(jià)離子的去除率較低。傳統(tǒng)的納濾膜通常帶負(fù)電,且只能去除帶有負(fù)電荷的多價(jià)離子和有機(jī)物。隨著pH的變化,GO膜的關(guān)鍵性質(zhì)(例如電荷,層間距)發(fā)生***變化,導(dǎo)致不同的pH依賴(lài)性界面現(xiàn)象和分離機(jī)制,一些有機(jī)物(例如三氯二苯脲)的分子形狀由于這種有機(jī)物與GO膜的碳表面的遷移性和π-π相互作用而極大地影響了它們的去除。氧化石墨烯可以有效去除溶液中的金屬離子。
TO具有光致親水特性,可保證高的水流速率,在沒(méi)有外部流體靜壓的情況下,與GO/TO情況相比,通過(guò)RGO/TO雜化膜的離子滲透率可降低至0.5%,而使用同位素標(biāo)記技術(shù)測(cè)量的水滲透率可保持在原來(lái)的60%,如圖8.5(d-g)所示。RGO/TO雜化膜優(yōu)異的脫鹽性能,表明TO對(duì)GO的光致還原作用有助于離子的有效排斥,而在紫外光照射下光誘導(dǎo)TO的親水轉(zhuǎn)化是保留優(yōu)異的水滲透性的主要原因。這種復(fù)合薄膜制備方法簡(jiǎn)單,在水凈化領(lǐng)域具有很好的潛在應(yīng)用。。從微觀方面,GO的聚集、分散、尺寸和官能團(tuán)也對(duì)水泥基復(fù)合材料的力學(xué)性能有影響。雞西單層氧化石墨
氧化石墨烯(GO)是印刷電子、催化、儲(chǔ)能、分離膜、生物醫(yī)學(xué)和復(fù)合材料的理想材料。杭州多層氧化石墨
氧化石墨烯(GO)的光學(xué)性質(zhì)與石墨烯有著很大差別。石墨烯是零帶隙半導(dǎo)體,在可見(jiàn)光范圍內(nèi)的光吸收系數(shù)近乎常數(shù)(~2.3%);相比之下,氧化石墨烯的光吸收系數(shù)要小一個(gè)數(shù)量級(jí)(~0.3%)[9][10]。而且,氧化石墨烯的光吸收系數(shù)是波長(zhǎng)的函數(shù),其吸收曲線峰值在可見(jiàn)光與紫外光交界附近,隨著波長(zhǎng)向近紅外一端移動(dòng),吸收系數(shù)逐漸下降。對(duì)紫外光的吸收(200-320nm)會(huì)表現(xiàn)出明顯的π-π*和n-π*躍遷,而且其強(qiáng)度會(huì)隨著含氧基團(tuán)的出現(xiàn)而增加[11]。氧化石墨烯(GO)的光響應(yīng)對(duì)其含氧基團(tuán)的數(shù)量十分敏感[12]。隨著含氧基團(tuán)的去除,氧化石墨烯(GO)在可見(jiàn)光波段的的光吸收率迅速上升,**終達(dá)到2.3%這一石墨烯吸收率的上限。杭州多層氧化石墨