AIVS-D系列在線PCBA插件AOI通過1200或2000萬高分辨率的工業(yè)相機,從電子電路板頂面拍照,通過AI人工技術(shù),深度學習算法、智能圖像分析,檢測電子電路板上插件元器件的缺件、多件、偏移、反向、錯件、浮高、OCV(文字識別)、可支持測試色環(huán)電阻錯料。本插件AOI設備可應用于波峰焊爐前或爐后,應用在爐后時,可自動檢測板卡的旋轉(zhuǎn)角度,保證元件的檢測正確性和穩(wěn)定性。AIVS-D系列在線PCBA插件AOI采用的卷積神經(jīng)網(wǎng)絡(ConvolutionalNeuralNetworks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(FeedforwardNeuralNetworks),是深度學習(deeplearning)的表示算法之一。卷積神經(jīng)網(wǎng)絡仿造生物的視知覺(visualperception)機制構(gòu)建,可以進行監(jiān)督學習和非監(jiān)督學習。作為圖像識別領域的算法之一,卷積神經(jīng)網(wǎng)絡在學習數(shù)據(jù)充足時有穩(wěn)定的表現(xiàn)。針對本系統(tǒng)所處理的大規(guī)模圖像分類問題,卷積神經(jīng)網(wǎng)絡將用于提取圖像的判別特征,再通過分類器進行學習和識別。AOI通過人工光源LED燈光代替自然光,光學透鏡和CCD代替人眼,已經(jīng)編好程的標準進行比較、分析和判斷。江西智能AOI系統(tǒng)
AOI圖像采集的然后一個關(guān)鍵步驟是控制系統(tǒng),光電傳感器的FOV(視窗)有限,物體高速運動中準確地抓拍到清晰的圖像,軟硬件協(xié)調(diào)動作非常重要,如下圖所示,當圖像傳感器與機臺移動速度不匹配時造成圖像的拉伸,收縮等變形,所以,載物移動平臺XY方向移動與圖像采集光電傳感器的同步移動影響到數(shù)據(jù)的準確,要在固定光照,等間距下拍攝一幅清晰的圖像,高精度的導軌,電機和運動控制程序是非常必要的。首先濾波的定義是將信號中特定波段頻率濾除的操作,是抑制和防止干擾的一項重要措施。在AOI檢測中,噪聲是造成圖像退化的因素之一,起因是AOI圖像獲取,傳輸過程中,外界雜散光,光電二極管電子噪聲及溫度,光源的不穩(wěn)定不均勻,機械系統(tǒng)的抖動,傳感器溫度等原因?qū)е?,不可避免的使得圖像因含有噪音而變得模糊。給圖像識別,圖像切割等后續(xù)處理工作帶來了困難。因此,為了獲得真實的圖像信息,除去噪聲的濾波處理必不可少。 江蘇爐前AOI檢測基于圖像檢查的基本原理是:每個具有明顯對比度的圖像都是可以被檢查的。
一是分類,即可以將產(chǎn)品分為合格和不合格,這是深度學習很重要的一個應用;二是定位,即幫助使用者定位物體的位置和數(shù)量;三是分割,即可以找到缺陷的輪廓,基于缺陷的輪廓和大小,對產(chǎn)品進行更精細的判別。通過深度學習算法,軟件可以自動學習瑕疵的特征,使得無規(guī)律圖像的分析變得可能;在精確度方面,可通過深度學習算法和制造業(yè)特有的數(shù)據(jù)提高檢測的精確度;雖然深度學習在很多方面具有優(yōu)勢,不過也并不是所有任務都適用。深度學習對瑕疵分類更有優(yōu)勢。
在現(xiàn)代工業(yè)自動化生產(chǎn)中,連續(xù)大批量生產(chǎn)中每一個制作過程都是有一定的次品率的,單獨去看雖然比率很小,但是相乘后卻成為企業(yè)難以提高良率的重要瓶頸,并且在經(jīng)過完整制程后再次去剔除次品,成本會高很多(例如,如果錫膏印刷工序存在定位偏差,且該問題直到芯片貼裝后的在線測試才被發(fā)現(xiàn),那么返修的成本將會是原成本的100倍以上),因此及時檢測以及次品剔除對質(zhì)量控制和成本控制是非常重要的,也是制造業(yè)進一步升級的重要基石。伴隨著元器件的微型化、細間距化等密度特征越來越明顯,生產(chǎn)品質(zhì)以及產(chǎn)能的需求不斷擴增。
圖像采集階段(光學掃描和數(shù)據(jù)收集)AOI的圖像采集系統(tǒng)主要包括光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分。因為攝影得到的圖像被用于與模板做對比,所以獲取的圖像信息準確性對于檢測結(jié)果非常重要,可以想象一下,如果圖像采集器看不清楚或看不到被檢測物體的特征點,那么也就無法談到準確的檢出。下面我們對光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分逐一分析介紹。首先,光電轉(zhuǎn)化攝影系統(tǒng)指的是光電二極管器件和與之搭配的成像系統(tǒng)。是獲得圖像的”眼睛”,原理都是光電二極管接受到被檢測物體反射的光線,光能轉(zhuǎn)化產(chǎn)生電荷,轉(zhuǎn)化后的電荷被光電傳感器中的電子元件收集,傳輸形成電壓模擬信號。二極管吸收光線強度不同時生成的模擬電壓大小不同,依次輸出模擬電壓值被轉(zhuǎn)化為數(shù)字灰階0-255值,灰階值反映了物體反射光的強弱,進而實現(xiàn)識別不同被檢測物體的目的。 一臺機器視覺設備通??梢园喾N配置以及多種原理、算法,取決與對設備功能的需求及結(jié)構(gòu)設計的復雜程度。河南新一代AOI
圖像傳感器是AOI系統(tǒng)采集圖像的基礎,目前市面上大多數(shù)廠商選擇使用面陣相機。江西智能AOI系統(tǒng)
AOI圖像采集的一個關(guān)鍵步驟是控制系統(tǒng),光電傳感器的FOV(視窗)有限,物體高速運動中準確地抓拍到清晰的圖像,軟硬件協(xié)調(diào)動作非常重要,如下圖所示,當圖像傳感器與機臺移動速度不匹配時造成圖像的拉伸,收縮等變形,所以,載物移動平臺XY方向移動與圖像采集光電傳感器的同步移動影響到數(shù)據(jù)的準確,要在固定光照,等間距下拍攝一幅清晰的圖像,高精度的導軌,電機和運動控制程序是非常必要的。在AOI檢測中,噪聲是造成圖像退化的因素之一,起因是AOI圖像獲取,傳輸過程中,外界雜散光,光電二極管電子噪聲及溫度,光源的不穩(wěn)定不均勻,機械系統(tǒng)的抖動,傳感器溫度等原因?qū)е?,不可避免的使得圖像因含有噪音而變得模糊。給圖像識別,圖像切割等后續(xù)處理工作帶來了困難。因此,為了獲得真實的圖像信息,除去噪聲的濾波處理必不可少。 江西智能AOI系統(tǒng)
深圳愛為視智能科技有限公司致力于機械及行業(yè)設備,是一家其他型公司。公司業(yè)務分為智能視覺檢測設備等,目前不斷進行創(chuàng)新和服務改進,為客戶提供良好的產(chǎn)品和服務。公司將不斷增強企業(yè)重點競爭力,努力學習行業(yè)知識,遵守行業(yè)規(guī)范,植根于機械及行業(yè)設備行業(yè)的發(fā)展。愛為視憑借創(chuàng)新的產(chǎn)品、專業(yè)的服務、眾多的成功案例積累起來的聲譽和口碑,讓企業(yè)發(fā)展再上新高。