山東AOI研發(fā)

來源: 發(fā)布時(shí)間:2022-01-17

    AOI是AutomatedOpticalInspection的縮寫,中文翻譯是自動(dòng)光學(xué)檢測(cè)。AOI本身是一種技術(shù),但目前大多指的是AOI設(shè)備,即自動(dòng)光學(xué)檢測(cè)設(shè)備。在國(guó)外AOI設(shè)備已經(jīng)有一定的歷史,AOl技術(shù)的主要應(yīng)用領(lǐng)域包括PCB、FPD、半導(dǎo)體、光伏等多個(gè)行業(yè),AOI設(shè)備多是在半導(dǎo)體和面板檢測(cè)領(lǐng)域應(yīng)用,導(dǎo)致目前AOI已經(jīng)被默認(rèn)為半導(dǎo)體和面板自動(dòng)化檢測(cè)的代名詞,而且更多強(qiáng)調(diào)的是貼裝、焊錫等表面缺陷的檢測(cè)。隨著技術(shù)的發(fā)展,已經(jīng)出現(xiàn)了3D-AOI產(chǎn)品。當(dāng)然,針對(duì)其他行業(yè)中的應(yīng)用,如紡織品、金屬等產(chǎn)品的表面檢測(cè),我們也可以這些檢測(cè)設(shè)備為AOI設(shè)備,只不過目前其他行業(yè)的應(yīng)用暫時(shí)沒有這么廣泛應(yīng)用,這種共識(shí)還沒有達(dá)成。 AOI設(shè)備是高度定制化產(chǎn)品,設(shè)備廠商往往需要根據(jù)下游客戶的要求進(jìn)行主機(jī)設(shè)備的調(diào)整或是軟件的二次開發(fā)。山東AOI研發(fā)

山東AOI研發(fā),AOI

本系統(tǒng)采用的卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)是一類包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)(Feedforward Neural Networks),是深度學(xué)習(xí)(deep learning)的表示算法之一。卷積神經(jīng)網(wǎng)絡(luò)仿造生物的視知覺(visual perception)機(jī)制構(gòu)建,可以進(jìn)行監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)。作為圖像識(shí)別領(lǐng)域的算法之一,卷積神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)數(shù)據(jù)充足時(shí)有穩(wěn)定的表現(xiàn)。針對(duì)本系統(tǒng)所處理的大規(guī)模圖像分類問題,卷積神經(jīng)網(wǎng)絡(luò)將用于提取圖像的判別特征,再通過分類器進(jìn)行學(xué)習(xí)和識(shí)別新一代AOI系統(tǒng)用計(jì)算機(jī)處理系統(tǒng)代替人腦執(zhí)行數(shù)據(jù)處理,讓AOI檢測(cè)系統(tǒng)可以取產(chǎn)制造中的人工目檢環(huán)節(jié)。

山東AOI研發(fā),AOI

    AOI圖像采集的然后一個(gè)關(guān)鍵步驟是控制系統(tǒng),光電傳感器的FOV(視窗)有限,物體高速運(yùn)動(dòng)中準(zhǔn)確地抓拍到清晰的圖像,軟硬件協(xié)調(diào)動(dòng)作非常重要,如下圖所示,當(dāng)圖像傳感器與機(jī)臺(tái)移動(dòng)速度不匹配時(shí)造成圖像的拉伸,收縮等變形,所以,載物移動(dòng)平臺(tái)XY方向移動(dòng)與圖像采集光電傳感器的同步移動(dòng)影響到數(shù)據(jù)的準(zhǔn)確,要在固定光照,等間距下拍攝一幅清晰的圖像,高精度的導(dǎo)軌,電機(jī)和運(yùn)動(dòng)控制程序是非常必要的。首先濾波的定義是將信號(hào)中特定波段頻率濾除的操作,是抑制和防止干擾的一項(xiàng)重要措施。在AOI檢測(cè)中,噪聲是造成圖像退化的因素之一,起因是AOI圖像獲取,傳輸過程中,外界雜散光,光電二極管電子噪聲及溫度,光源的不穩(wěn)定不均勻,機(jī)械系統(tǒng)的抖動(dòng),傳感器溫度等原因?qū)е?,不可避免的使得圖像因含有噪音而變得模糊。給圖像識(shí)別,圖像切割等后續(xù)處理工作帶來了困難。因此,為了獲得真實(shí)的圖像信息,除去噪聲的濾波處理必不可少。

人工智能成為了時(shí)下科技的關(guān)鍵詞之一,生活中有越來越多的人工智能產(chǎn)物走進(jìn)我們的視野,其中AI視覺的這一產(chǎn)業(yè)鏈也在迅速地延伸,AI視覺中的各種硬件和算法也隨之衍生,AI視覺主要通過對(duì)圖像的分析處理進(jìn)而識(shí)別得出相應(yīng)需要的視覺結(jié)果。AI視覺的產(chǎn)生給現(xiàn)代企業(yè)的生產(chǎn)制造提供了更高效的檢測(cè)方式,同時(shí)帶來了更多的機(jī)遇,AI視覺檢測(cè)的優(yōu)勢(shì)遠(yuǎn)遠(yuǎn)超越了人工檢測(cè)。 而在現(xiàn)實(shí)中的生產(chǎn)檢測(cè)中,AI視覺的亮點(diǎn)則在多方面呈現(xiàn)。愛為視(AIVS)視覺檢測(cè)設(shè)備,更是走在行業(yè)前列。使用插件爐前檢測(cè)可以將不良品攔截在爐前,從而降低成本,提高效率。

山東AOI研發(fā),AOI

AOI的圖像采集系統(tǒng)主要包括光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個(gè)部分。因?yàn)閿z影得到的圖像被用于與模板做對(duì)比,所以獲取的圖像信息準(zhǔn)確性對(duì)于檢測(cè)結(jié)果非常重要,可以想象一下,如果圖像采集器看不清楚或看不到被檢測(cè)物體的特征點(diǎn),那么也就無法談到準(zhǔn)確的檢出。下面我們對(duì)光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個(gè)部分逐一分析介紹。首先,光電轉(zhuǎn)化攝影系統(tǒng)指的是光電二極管器件和與之搭配的成像系統(tǒng)。是獲得圖像的”眼睛”,原理都是光電二極管接受到被檢測(cè)物體反射的光線,光能轉(zhuǎn)化產(chǎn)生電荷,轉(zhuǎn)化后的電荷被光電傳感器中的電子元件收集,傳輸形成電壓模擬信號(hào)。二極管吸收光線強(qiáng)度不同時(shí)生成的模擬電壓大小不同,依次輸出模擬電壓值被轉(zhuǎn)化為數(shù)字灰階0-255值,灰階值反映了物體反射光的強(qiáng)弱,進(jìn)而實(shí)現(xiàn)識(shí)別不同被檢測(cè)物體的目的。目前常用的圖像識(shí)別算法為灰度相關(guān)算法,通過計(jì)算歸一化的相關(guān)來量化檢測(cè)圖像和標(biāo)準(zhǔn)圖像之間的相似程度。江西不需要設(shè)置參數(shù)的AOI研發(fā)

插件爐前檢測(cè)可以利用數(shù)據(jù)庫(kù)實(shí)時(shí)保存檢測(cè)的狀態(tài)和結(jié)果,幫助、分析產(chǎn)品出錯(cuò)和誤檢原因。山東AOI研發(fā)

視覺世界,是無限變化的,系統(tǒng)設(shè)計(jì)者有無數(shù)種方法使用視覺數(shù)據(jù)。其中,有一些應(yīng)用案例,例如目標(biāo)識(shí)別以及定位,都是可以通過深度學(xué)習(xí)技術(shù),來得到很好的解決的。因此,如果你的應(yīng)用,需要一種算法來識(shí)別家具,那么你很幸運(yùn):你可以選擇一種深度神經(jīng)網(wǎng)絡(luò)算法,并且使用自己的數(shù)據(jù)集,對(duì)其進(jìn)行重新編譯。我們要先看看這個(gè)數(shù)據(jù)集。訓(xùn)練數(shù)據(jù),對(duì)有效的深度學(xué)習(xí)算法是至關(guān)重要的。訓(xùn)練和驗(yàn)證數(shù)據(jù),必須能夠表示出算法要處理的情況的多樣性。山東AOI研發(fā)

深圳愛為視智能科技有限公司致力于機(jī)械及行業(yè)設(shè)備,是一家其他型公司。公司自成立以來,以質(zhì)量為發(fā)展,讓匠心彌散在每個(gè)細(xì)節(jié),公司旗下智能視覺檢測(cè)設(shè)備深受客戶的喜愛。公司從事機(jī)械及行業(yè)設(shè)備多年,有著創(chuàng)新的設(shè)計(jì)、強(qiáng)大的技術(shù),還有一批**的專業(yè)化的隊(duì)伍,確保為客戶提供良好的產(chǎn)品及服務(wù)。愛為視立足于全國(guó)市場(chǎng),依托強(qiáng)大的研發(fā)實(shí)力,融合前沿的技術(shù)理念,飛快響應(yīng)客戶的變化需求。

標(biāo)簽: AOI