宿遷蛋白病毒單光纖成像技術(shù)

來(lái)源: 發(fā)布時(shí)間:2022-02-10

光纖成像技術(shù)具有損耗低、成本低等優(yōu)勢(shì),因此,光纖成像技術(shù)較多應(yīng)用于生物醫(yī)學(xué)、激光技術(shù)等領(lǐng)域。早期的光纖成像系統(tǒng)采用多根單模光纖組成的光纖束收集圖像,每一根單模光纖用于收集一個(gè)像素點(diǎn)的圖像。包含較多的單模光纖,導(dǎo)致光纖束的直徑較大,因此,為了提高光纖成像系統(tǒng)的微型化程度,可以將光纖成像系統(tǒng)中的光纖束替換為單根多模光纖?,F(xiàn)有技術(shù)中的光纖成像系統(tǒng)仍包含多根多模光纖,若待成像物體所處環(huán)境的空間較窄,例如,待成像物體所處環(huán)境為血管,支氣管等,可能會(huì)導(dǎo)致該光纖成像系統(tǒng)中的多根多模光纖無(wú)法進(jìn)入待成像物體所處環(huán)境,也就無(wú)法獲取到待成像物體的圖像,導(dǎo)致光纖成像系統(tǒng)的適用范圍較窄。在體光纖成像記錄為一項(xiàng)新興的分子、 基因表達(dá)的分析 檢測(cè)技術(shù)。宿遷蛋白病毒單光纖成像技術(shù)

宿遷蛋白病毒單光纖成像技術(shù),在體光纖成像記錄

在體光纖成像記錄與可見(jiàn)分光光度計(jì)相比,紫外可見(jiàn)分光光度計(jì)有什么不同?這兩個(gè)方面都可以區(qū)分,相信這一問(wèn)題是困擾著許多剛接觸實(shí)驗(yàn)儀器,但對(duì)這兩種儀器都沒(méi)有深入了解,沒(méi)有人去指導(dǎo)學(xué)習(xí)的朋友,儀器分析波長(zhǎng)范圍不一樣。紫外線-可見(jiàn)光度計(jì)是在200-1000納米之間,其中紫外光譜是200-330納米,可見(jiàn)光譜為330-800納米,近紅外光譜為800-1000納米。儀器分析物質(zhì)也不同,紫外光譜多分析有機(jī)物,可見(jiàn)光譜多分析無(wú)機(jī)物,當(dāng)然也不完全是這樣,但有機(jī)物吸收敏感點(diǎn)大多在紫外光譜區(qū),而無(wú)機(jī)物的吸收敏感點(diǎn)位于可見(jiàn)光譜區(qū)。徐州在體實(shí)時(shí)監(jiān)測(cè)影像光纖服務(wù)公司在體光纖成像記錄中的光纖束替換為單根多模光纖。

宿遷蛋白病毒單光纖成像技術(shù),在體光纖成像記錄

在體光纖成像記錄熒光素酶的每個(gè)催化反應(yīng)只產(chǎn)生一個(gè)光 子 , 通常肉眼無(wú)法直接觀察到, 而且光子在強(qiáng)散射性的生物組織中傳輸時(shí), 將會(huì)發(fā)生吸收、 散射、 反射、 透射等大量光學(xué)行為 。 因此,必須采用高 靈敏度的光學(xué)檢測(cè)儀器( 如CCD camera)采集并定量檢測(cè)生物體內(nèi)所發(fā)射的光子數(shù)量, 然后將其轉(zhuǎn)換成圖像, 在體生物發(fā)光成像中的發(fā)光光譜范圍通常為可見(jiàn)光到 近紅外光波段, 哺乳動(dòng)物體內(nèi)血紅蛋白主要吸收可見(jiàn)光, 水和脂質(zhì)主要吸收紅外線, 但對(duì)波長(zhǎng)為 590~1500nm的紅光至近紅外線吸收能力則較差, 因此, 大部分波長(zhǎng)超過(guò)600nm的紅光, 經(jīng)過(guò)散射、吸收后能夠穿透哺乳動(dòng)物組織, 被生物體外的高靈敏光學(xué)檢測(cè)儀器探測(cè)到, 這是在體生物發(fā)光成像的理論基礎(chǔ)。

在體光纖成像記錄對(duì)于成像結(jié)果的處理,需要依賴(lài)專(zhuān)業(yè)的圖像分析軟件,分割出目的信號(hào)和背景噪聲,獲得準(zhǔn)確的熒光強(qiáng)度值。光學(xué)成像方法可分為基于熒光的方法和基于生物發(fā)光的方法。光學(xué)相對(duì)于設(shè)備小且較便宜?;畹奈矬w顯微成像的缺點(diǎn)是它的有創(chuàng)性,因?yàn)樾枰ㄟ^(guò)手術(shù)創(chuàng)造一個(gè)窗口來(lái)觀察感興趣的結(jié)構(gòu)和組織。宏觀層析熒光成像可以無(wú)創(chuàng)、定量和三維方式測(cè)定熒光,但其空間分辨率比活的物體顯微鏡低(約1毫米)。光學(xué)成像的根本缺點(diǎn)是光的組織穿透率低。由于吸收和散射,熒光發(fā)射的可見(jiàn)光譜中的光只能穿透幾百微米的組織。這個(gè)問(wèn)題限制了大多數(shù)光學(xué)方法在小動(dòng)物或人類(lèi)表面結(jié)構(gòu)研究中的應(yīng)用。使用近紅外光譜能夠提高信號(hào)的組織穿透能力,并能降低了組織的自體熒光。在體光纖成像記錄同時(shí)不受外界光纖干擾。

宿遷蛋白病毒單光纖成像技術(shù),在體光纖成像記錄

在體監(jiān)測(cè)基因療于中的基因表達(dá),隨著 后基因組時(shí)代的到來(lái)和人們對(duì)疾病發(fā)生的發(fā)展機(jī)制的深入了解, 在基因水平上療于壞掉的、 心血管疾病、 和分子遺傳病等惡性疾病已經(jīng)得到國(guó)內(nèi)外研究人員越來(lái)越 較多的關(guān)注。如何客觀地檢測(cè)基因療于的臨床療效判斷終點(diǎn), 有效監(jiān)測(cè)轉(zhuǎn)基因在生物體內(nèi)的傳送, 并定量檢測(cè)基因療于的轉(zhuǎn)基因表達(dá), 己經(jīng)成為 基因療于應(yīng)用的關(guān)鍵所在 。通過(guò)熒光素酶或綠色熒光蛋白等報(bào)告基因, 在體光纖成像記錄能夠進(jìn)行基因表達(dá)的準(zhǔn)確定位和定量分析, 在整體水平上無(wú)創(chuàng)、 實(shí)時(shí)、 定量地檢測(cè)轉(zhuǎn)基因的時(shí)空表達(dá)。在體光纖成像記錄能夠反映細(xì)胞或基因表達(dá)的空間和時(shí)間分布。宿遷蛋白病毒單光纖成像技術(shù)

在體光纖成像記錄可分為基于熒光的方法和基于生物發(fā)光的方法。宿遷蛋白病毒單光纖成像技術(shù)

在體光纖成像記錄增大視場(chǎng)可以提高成像光譜儀的工作效率,大視場(chǎng)寬覆蓋是下一代成像光譜儀的發(fā)展趨勢(shì)。視場(chǎng)增大通常會(huì)導(dǎo)致遙感器質(zhì)量和體積的增加,如何在獲得大視場(chǎng)的同時(shí)具有小型化與輕量化的結(jié)構(gòu)是每個(gè)成像光譜儀設(shè)計(jì)者應(yīng)該權(quán)衡的問(wèn)題。為了突破成像光譜儀質(zhì)量與體積對(duì)視場(chǎng)的限制,提出使用光纖傳像束代替色散型成像光譜儀中的狹縫來(lái)鏈接望遠(yuǎn)鏡和光譜儀組成光纖成像光譜儀。利用線列光纖傳像束柔軟可拆分的特點(diǎn),將望遠(yuǎn)鏡的線性大視場(chǎng)拆分為若干個(gè)小視場(chǎng),將它們折疊分離放置于光譜儀物面上,經(jīng)過(guò)光譜儀分光成像至同一焦平面上。宿遷蛋白病毒單光纖成像技術(shù)