南京腦立體定位神經(jīng)元活動記錄技術(shù)原理

來源: 發(fā)布時間:2021-12-12

在體光纖成像記錄在自由活動動物的深部腦區(qū)實現(xiàn)光信號記錄和神經(jīng)細胞活性調(diào)控;高質(zhì)量,亞細胞分辨率的成像;多波長成像,實現(xiàn)較多的鈣離子成像(GCaMP or RCaMP),和光遺傳實驗,特定目標光刺激;在體光纖成像系統(tǒng)是模塊化設計,使用者擁有很高的靈活性,可以隨時根據(jù)研究需要對系統(tǒng)進行調(diào)整,比如調(diào)整光源,波長,濾光片,相機等。在深部腦區(qū)選定的特定神經(jīng)細胞或部分獲得連續(xù)的實驗數(shù)據(jù)流,然后對單細胞提取密度軌跡。鈣離子成像軌跡也可以被同步,與其他行為學實驗(攝像拍攝,獎勵設備等)同步時間標記。在體光纖成像記錄利用生物發(fā)光技術(shù)進行動物體內(nèi)檢測。南京腦立體定位神經(jīng)元活動記錄技術(shù)原理

南京腦立體定位神經(jīng)元活動記錄技術(shù)原理,在體光纖成像記錄

在體光纖成像記錄系統(tǒng)在成像速度和分辨率方面還存很多不足。在成像系統(tǒng)的傳輸矩陣測試階段,必須采用SLM 實現(xiàn)相位調(diào)制,而SLM 器件的響應速度比較低,幀率只能達到幾百赫茲,一些特殊的器件可以達到20 kHz,但對于像素為100pixel×100pixel的成像區(qū)域進行逐點成像,成像速率只能達到2 frame/s,在實際應用中有很大的局限性。SLM 器件的光效率較低,體積較大,不利于系統(tǒng)集成和結(jié)構(gòu)微型化。單光纖成像系統(tǒng)需要預先測定光纖的傳輸特性(即光纖傳輸矩陣),而傳輸矩陣會受光纖形態(tài)(如彎曲、壓力和溫度)的影響。如果光纖在使用過程中受到外界的擾動,那么傳輸矩陣會發(fā)生變化,對成像產(chǎn)生較大影響。武漢神經(jīng)生物學光纖成像記錄方案在體光纖成像記錄和散射介質(zhì)成像的機理既有關(guān)聯(lián)。

南京腦立體定位神經(jīng)元活動記錄技術(shù)原理,在體光纖成像記錄

在體光纖成像記錄分辨率和對比度是成像質(zhì)量的重要組成部分,分辨率指成像系統(tǒng)所能重現(xiàn)的被測物體細節(jié)的數(shù)量,對比度則是成像系統(tǒng)所產(chǎn)生的被測物體與其背景之間的灰度差別。攝像頭、鏡頭和燈光是決定分辨率和對比度的重要因素。成像系統(tǒng)所需較小像素分辨率可由下式計算:較小分辨率=(物件較長端長度/較小特征尺寸)×2以條形碼為例,假如較長端長度為60mm,較小特征尺寸是0.2mm,那么根據(jù)上式可算出其較小分辨率應該是(60/0.2)×2=600鏡頭焦距是分辨率另一種表現(xiàn)形式。

在體光纖成像記錄的目的是實時檢測細胞的活性變化?;阝}離子濃度變化的熒光成像技術(shù)被較多用來記錄神經(jīng)元活性。在體光纖記錄方法與傳統(tǒng)的在體電生理記錄方法有著不同的特點,光纖記錄因其穩(wěn)定、方便、易上手而應用較多。首先,將熒光蛋白表達在特定類型的神經(jīng)元中,光纖記錄可以實現(xiàn)細胞類型特異性的活性檢測,而用電生理記錄的方法記錄特定類型的神經(jīng)元的活性比較困難。其次,電生理記錄容易受到環(huán)境中的電信號以及動物的行為動作影響,而光纖記錄相對來說有著較強的抗干擾性能。然后,光纖記錄相對穩(wěn)定,可以很容易實現(xiàn)長時程的活性檢測,例如動物的整個學習過程,而利用電生理記錄實現(xiàn)起來則相對困難。較后,光纖記錄用神經(jīng)元群體的熒光強度變化來表征神經(jīng)元整體的活性變化,不能反映單個神經(jīng)元的活性,而電生理記錄則能夠檢測到單個神經(jīng)元的活性,具有更高的空間分辨率。在體光纖成像記錄需要許多數(shù)據(jù)點。

南京腦立體定位神經(jīng)元活動記錄技術(shù)原理,在體光纖成像記錄

在體光纖成像記錄成像系統(tǒng)是典型的在體熒光成像系統(tǒng), 主要 CCD 相機、 成像暗箱、 激光器、 激發(fā)和發(fā)射 濾光片、 恒溫臺、 氣體麻醉系統(tǒng)、數(shù)據(jù)采集的計算機、 數(shù)據(jù)處理軟件等組成。將小動物放置到成像暗箱中, 利用高性能的制冷對活的物體小動物某個特定位置的發(fā)光進行投影成像, 探測從小動物體內(nèi)系統(tǒng)發(fā)射出的低水平熒光信號, 然后將得到的投影圖像與小動物的普通圖像進行疊加, 從而實現(xiàn)對小動物某個特定位置 的生物熒光進行量化, 井且可以重復進行。在體光纖成像記錄用于對細胞內(nèi)部的各個細胞器進行染色。武漢神經(jīng)元光纖成像記錄技術(shù)方案

生物成像技術(shù)在臨床醫(yī)學診斷中的應用也越來越受到重視。南京腦立體定位神經(jīng)元活動記錄技術(shù)原理

在體光纖成像記錄納米級成像受到所用光的波長的限制。有多種方法可以克服這一衍射極限,但它們通常需要大型顯微鏡和困難的加工程序?!边@些系統(tǒng)不適用于在生物組織的深層或其他難以到達的地方成像。在傳統(tǒng)的顯微鏡檢查中,通常會逐點照射樣品以產(chǎn)生整個樣品的圖像。這需要大量時間,因為高分辨率圖像需要許多數(shù)據(jù)點。壓縮成像要快得多,但是我們也證明了它能夠分辨比傳統(tǒng)衍射極限成像所能分辨的小兩倍以上的細節(jié)。開發(fā)考慮了微創(chuàng)生物成像。但這對于納米光刻技術(shù)中的傳感應用也非常具有前途,因為它不需要熒光標記,而熒光標記是其他超分辨率成像方法所必需的。南京腦立體定位神經(jīng)元活動記錄技術(shù)原理