南充小學數(shù)學教學教具

來源: 發(fā)布時間:2023-12-15

圖形計算公式

1、正方形 (C:周長 S:面積 a:邊長)周長=邊長×4 C=4a面積=邊長×邊長 S=a×a

2、正方體 (V:體積 a:棱長 )表面積=棱長×棱長×6 S表=a×a×6體積=棱長×棱長×棱長 V=a×a×a

3、長方形( C:周長 S:面積 a:邊長 )周長=(長+寬)×2 C=2(a+b)面積=長×寬 S=ab

4、長方體 (V:體積 s:面積 a:長 b: 寬 c:高)(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+bc+ca)(2)體積=長×寬×高 V=abc

5、三角形 (s:面積 a:底 h:高)

面積=底×高÷2 s=ah÷2

三角形高=面積 ×2÷底 

三角形底=面積 ×2÷高

6、平行四邊形 (s:面積 a:底 h:高)

面積=底×高 s=ah 私立中小學數(shù)學教學儀器。南充小學數(shù)學教學教具

南充小學數(shù)學教學教具,數(shù)學教學教具

平行四邊形定理

平行四邊形性質定理:

1.平行四邊形的對角相等

2.平行四邊形的對邊相等

3.平行四邊形的對角線互相平分

推論:夾在兩條平行線間的平行線段相等

平行四邊形判定定理:

1.兩組對角分別相等的四邊形是平行四邊形

2.兩組對邊分別相等的四邊形是平行四邊形

3.對角線互相平分的四邊形是平行四邊形

4.一組對邊平行相等的四邊形是平行四邊形

矩形定理

矩形性質定理1:矩形的四個角都是直角

矩形性質定理2:矩形的對角線相等

矩形判定定理1:有三個角是直角的四邊形是矩形

矩形判定定理2:對角線相等的平行四邊形是矩形

果洛中學數(shù)學教學教具小學數(shù)學傾向換算模型。

南充小學數(shù)學教學教具,數(shù)學教學教具

1. 數(shù)學史2. 數(shù)理邏輯與數(shù)學基礎a:演繹邏輯學(也稱符號邏輯學),b:證明論(也稱元數(shù)學),c:遞歸論,d:模型論,e:公理**論,f:數(shù)學基礎,g:數(shù)理邏輯與數(shù)學基礎其他學科。3. 數(shù)論a:初等數(shù)論,b:解析數(shù)論,c:代數(shù)數(shù)論,d:超越數(shù)論,e:丟番圖逼近,f:數(shù)的幾何,g:概率數(shù)論,h:計算數(shù)論,i:數(shù)論其他學科。4. 代數(shù)學a:線性代數(shù),b:群論,c:域論,d:李群,e:李代數(shù),f:Kac-Moody代數(shù),g:環(huán)論(包括交換環(huán)與交換代數(shù),結合環(huán)與結合代數(shù),非結合環(huán)與非結合代數(shù)等),h:模論,i:格論,j:泛代數(shù)理論,k:范疇論,l:同調代數(shù),m:代數(shù)K理論,n:微分代數(shù),o:代數(shù)編碼理論,p:代數(shù)學其他學科。5. 代數(shù)幾何學6. 幾何學a:幾何學基礎,b:歐氏幾何學,c:非歐幾何學(包括黎曼幾何學等),d:球面幾何學,e:向量和張量分析,f:仿射幾何學,g:射影幾何學,h:微分幾何學,i:分數(shù)維幾何,j:計算幾何學,k:幾何學其他學科。

計量單位長度、面積和體積以及其同類量之間的進率質量單位和他們之間的進率1噸=1000千克 一千克=1000克時間單位進率、人民幣進率1小時=60分鐘 1分鐘=60秒1塊=10角比與比例正比例、反比例、化簡比、求比值、比與分數(shù)、除法聯(lián)系、比、比例、可以用比例解應用題圖形與空間圖形、空間、周長、面積、側面積、表面積、圖形的變換、圖形與位置、圖形的認識與測量統(tǒng)計和可能性統(tǒng)計表、統(tǒng)計圖、平均數(shù)、可能性

四則運算的意義和計數(shù)方法加法意義、減法意義、乘法意義、除法意義、加法、減法、除法、乘法、驗算運算定律與簡便方法、四則混合運算加法交換律(a+b=b+a)、加法結合律(a+(b+c)=(a+b)+c)、乘法交換律(a*b=b*a)、乘法結合律(a*(b*c)=(a*b)*c)、乘法分配律(a*(b+c)=a*b+a*c)、連減的性質(a-b-c=a-(b+c))、商不變的性質減法運算性質:a-(b+c)=a-b-c a-(b-c)=a-b+c運算分級:加法和減法叫做一級運算;乘法和除法叫做二級運算(簡略)復合應用題式與方程方程 小學數(shù)學體積演示教具。

南充小學數(shù)學教學教具,數(shù)學教學教具

利用直觀教學,培養(yǎng)學生的觀察能力和思維能力。

觀察是正確思維的前提,通過觀察可使學生由感性認識上升到理性認識。在數(shù)學教學中如果能充分運用直觀教具進行演示操作,讓學生用眼看、用手摸、用心想。這樣學生通過觀察、分析、綜合、比較、分類等思維活動就會掌握知識的本質特征和內在聯(lián)系。例如:在講“三角形的內角和等于180度”時如果讓學生用量角器去量三個內角的度數(shù)則太繁瑣也不易得出結果而且也不易驗證其結果的準確性。如果用教具演示就容易多了:讓一個三角形模型的兩內角拼成一個平角(即180度),那么第三個內角必須是平角(180度)減去另兩個內角的和了。這樣通過演示操作學生就很容易理解和掌握“三角形的內角和等于180度”這個定理了。 小學數(shù)學圓柱面積演示教具。南充小學數(shù)學教學教具

中學立體幾何模型演示教具。南充小學數(shù)學教學教具

14. 積分方程

15. 泛函分析

a:線性算子理論,

b:變分法,

c:拓撲線性空間,

d:希爾伯特空間,

e:函數(shù)空間,

f:巴拿赫空間,

g:算子代數(shù) 

h:測度與積分,

i:廣義函數(shù)論,

j:非線性泛函分析,

k:泛函分析其他學科。

16. 計算數(shù)學a:插值法與逼近論,b:常微分方程數(shù)值解,c:偏微分方程數(shù)值解,d:積分方程數(shù)值解,e:數(shù)值代數(shù),f:連續(xù)問題離散化方法,g:隨機數(shù)值實驗,h:誤差分析,i:計算數(shù)學其他學科。

17. 概率論a:幾何概率,b:概率分布,c:極限理論,d:隨機過程(包括正態(tài)過程與平穩(wěn)過程、點過程等),e:馬爾可夫過程,f:隨機分析,g:鞅論,h:應用概率論(具體應用入有關學科),i:概率論其他學科。18. 數(shù)理統(tǒng)計學a:抽樣理論(包括抽樣分布、抽樣調查等 ),b:假設檢驗,c:非參數(shù)統(tǒng)計,d:方差分析,e:相關回歸分析,f:統(tǒng)計推斷,g:貝葉斯統(tǒng)計(包括參數(shù)估計等),h:試驗設計,i:多元分析,j:統(tǒng)計判決理論,k:時間序列分析,l:數(shù)理統(tǒng)計學其他學科。 南充小學數(shù)學教學教具