當物體占據的空間是二維空間時,所占空間的大小叫做該物體的面積,面積可以是平面的也可以是曲面的。平方米,平方分米,平方厘米,是公認的面積單位,用字母可以表示為(m2,dm2,cm2)。面積是表示平面中二維圖形或形狀或平面層的程度的數量。表面積是三維物體的二維表面上的模擬物。面積可以理解為具有給定厚度的材料的量,面積是形成形狀的模型所必需的.面積是表示平面中二維圖形或形狀或平面層的程度的數量。表面積是三維物體的二維表面上的模擬物。面積可以理解為具有給定厚度的材料的量,面積是形成形狀的模型所必需的,或者用單一涂層覆蓋表面所需的涂料量。它是曲線長度(一維概念)或實體體積(三維概念)的二維模擬。小學數學各年級常用教學儀器。基礎教育數學教學教具配置
小學數學是通過教材,教小朋友們關于數的認識,四則運算,圖形和長度的計算公式,單位轉換一系列的知識,為初中和日常生活的計算打下良好的數學基礎。荷蘭教育家弗賴登諾爾認為:“數學來源于現實,也必須扎根于現實,并且應用于現實?!?現代數學要求我們用數學的眼光來觀察世界,用數學的語言來闡述世界。從小學生數學學習心理來看,學生的學習過程不是被動的吸收過程,而是一個以已有知識和經驗為基礎的重新建構的過程,因此,做中學,玩中學,將抽象的數學關系轉化為學生生活中熟悉的事例,將使兒童學得更主動。從我們的教育目標來看,我們在傳授知識的同時,更應注重培養(yǎng)學生的觀察、分析和應用等綜合能力基礎教育數學教學教具配置聯動型針面教學模型。
5、三角形(s:面積a:底h:高)面積=底×高÷2s=ah÷2三角形高=面積×2÷底三角形底=面積×2÷高6、平行四邊形(s:面積a:底h:高)面積=底×高s=ah7、梯形(s:面積a:上底b:下底h:高)面積=(上底+下底)×高÷2s=(a+b)×h÷28、圓形(S:面積C:周長лd=直徑r=半徑)(1)周長=直徑×л=2×л×半徑C=лd=2лr(2)面積=半徑×半徑×л9、圓柱體(v:體積h:高s:底面積r:底面半徑c:底面周長)(1)側面積=底面周長×高=ch(2лr或лd)(2)表面積=側面積+底面積×2(3)體積=底面積×高(4)體積=側面積÷2×半徑10、圓錐體(v:體積h:高s:底面積r:底面半徑)體積=底面積×高÷3
計量單位長度、面積和體積以及其同類量之間的進率質量單位和他們之間的進率1噸=1000千克一千克=1000克時間單位進率、人民幣進率1小時=60分鐘1分鐘=60秒1塊=10角比與比例正比例、反比例、化簡比、求比值、比與分數、除法聯系、比、比例、可以用比例解應用題圖形與空間圖形、空間、周長、面積、側面積、表面積、圖形的變換、圖形與位置、圖形的認識與測量統(tǒng)計和可能性統(tǒng)計表、統(tǒng)計圖、平均數、可能性四則運算的意義和計數方法加法意義、減法意義、乘法意義、除法意義、加法、減法、除法、乘法、驗算運算定律與簡便方法、四則混合運算加法交換律(a+b=b+a)、加法結合律(a+(b+c)=(a+b)+c)、乘法交換律(a*b=b*a)、乘法結合律(a*(b*c)=(a*b)*c)、乘法分配律(a*(b+c)=a*b+a*c)、連減的性質(a-b-c=a-(b+c))、商不變的性質減法運算性質:a-(b+c)=a-b-ca-(b-c)=a-b+c運算分級:加法和減法叫做一級運算;乘法和除法叫做二級運算(簡略)復合應用題式與方程方程專業(yè)中小學數學教學儀器供應商。
8、什么叫比例:表示兩個比相等的式子叫做比例。如3:6=9:189、比例的基本性質:在比例里,兩外項之積等于兩內項之積。10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18解比例的依據是比例的基本性質。11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。13、把小數化成百分數,只要把小數點向右移動兩位,同時在后面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。普及中小學教堂數學儀器教具批發(fā)。西寧中小學數學教學教具
小學數學演示教具批發(fā)?;A教育數學教學教具配置
等腰三角形性質等腰三角形的性質定理:等腰三角形的兩個底角相等(即等邊對等角)推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)對稱定律定理:線段垂直平分線上的點和這條線段兩個端點的距離相等逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上線段的垂直平分線可看作和線段兩端點距離相等的所有點的定理1:關于某條直線對稱的兩個圖形是全等形定理2:如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線定理3:兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱。歡迎咨詢!基礎教育數學教學教具配置