東莞次晶態(tài)DLC涂層工藝

來源: 發(fā)布時間:2023-12-19

傳統(tǒng)的中山DLC涂層通常不到5微米,很容易被刮擦掉,遠遠達不到發(fā)動機的實際使用壽命。無論是在什么樣的零件上使用,一般來說,在滿足零件尺寸要求的前提下,涂層的厚度,尤其是DLC涂層的厚度往往是越厚越好,這樣零件的耐磨性會相應提高。然而,一旦涂層的厚度增加,尤其是DLC層的厚度增加,就會導其內應力增大,影響涂層和基材結合力,導致涂層與基材剝離,這就對涂層的使用壽命和效率產(chǎn)生影響。因此,厚度及其表現(xiàn)出的耐磨性一直是應用上的一個瓶頸。但是這一問題隨著涂層加工業(yè)的發(fā)展已經(jīng)得到了克服,可以說,dlc涂層是一種性能良好的有著廣闊應用前景及發(fā)展前景的涂層。DLC涂層具有硬度高、耐磨性好、導電性強和化學穩(wěn)定性好等優(yōu)點。東莞次晶態(tài)DLC涂層工藝

dlc涂層擁有多種多樣的特性,這也為有著功能明確的多功能表面的新產(chǎn)品的開發(fā)創(chuàng)造了條件。dlc涂層優(yōu)良的涂層性能使其得以實現(xiàn)產(chǎn)業(yè)化生產(chǎn)并得到普遍的應用,這些發(fā)展激發(fā)了很多科研院所和公司投資進一步的研究并帶動了整個產(chǎn)業(yè)向將來邁進了一步。dlc涂層具有獨特的高硬度和低摩擦系數(shù),并且具有較強地不與金屬材料粘結的性能。因此,這種涂層技術成為汽車行業(yè)應用的理想選擇。dlc涂層的工業(yè)化生產(chǎn)開始于上世紀末和本世紀初,和普通的應用于刀具/模具上的硬質涂層(如TiN,TiAIN,CrN,TiCN等)相比是一種嶄新的涂層技術。江門高精密模具DLC涂層制備DLC涂層具有很高的熱穩(wěn)定性,可以在高溫下保持良好的性能。

DLC類金剛石涂層加工是一種在微觀結構上含有金剛石成分的涂層。DLC的主要構成元素是碳,由于碳原子之間不同的結合方式,從而產(chǎn)生出不同的物質,比如:石墨是碳以sp2鍵的形式結合;金剛石是碳以sp3鍵的形式結合;DLC類金剛石是碳以sp3和sp2健的形式結合;其涂層結構是由碳的sp3和sp2形態(tài)混合而成的無定型組織,形成的膜層結構中sp3和sp2各自所占的百分比直接影響涂層性能的好壞,如果sp3所占的比率越高,膜層性能就越接近天然金剛石,如果sp3所占的比率越高,膜層性能就越接近天然金剛石,顯微硬度就會越高;sp2所占的比率越高,膜層的自潤滑性能就越好,摩擦因數(shù)越小,但是顯微硬度會降低,其與金屬之間的摩擦因數(shù)的范圍通常是0.05~0.2左右,通過設定生產(chǎn)流程中的工藝參數(shù)和選擇不同的靶材,可以控制成形膜層的屬性來滿足不同場合的需求。

DLC涂層加工的優(yōu)勢:1.提高材料硬度和耐磨性。DLC涂層加工可以將材料的硬度提高到2000-3000HV,比普通鋼鐵高出數(shù)倍,甚至可以達到鉆石的硬度。這種高硬度可以有效地提高材料的耐磨性,使其在摩擦、磨損和刮擦等環(huán)境下更加耐用。2.提高材料的耐腐蝕性。DLC涂層加工可以在材料表面形成一層致密的、不透水的保護層,有效地防止外界的腐蝕和氧化,從而提高材料的耐腐蝕性。這種保護層還可以防止材料表面的污染和沉積,保持材料表面的光潔度和美觀度。3.提高材料的潤滑性。DLC涂層加工可以在材料表面形成一層低摩擦系數(shù)的潤滑層,使材料表面具有良好的自潤滑性。這種潤滑層可以降低材料表面的摩擦系數(shù),減少能量損失和熱量產(chǎn)生,從而提高材料的使用效率和壽命。4.提高材料的耐高溫性。DLC涂層加工可以在材料表面形成一層高溫穩(wěn)定的保護層,使材料具有良好的耐高溫性。這種保護層可以防止材料表面的氧化和腐蝕,保持材料的結構和性能不受高溫影響。利晟納米分享注塑模具DLC涂層后所具備的優(yōu)勢。

中山DLC處理的工藝流程包括所需處理工件基體的處理(拋光、清洗)、靶材的選擇、成形工藝條件的設定、成形及成形后的檢測等。要想得到G品質的DLC涂層,工件基體處理的好壞至關重要。將工件要拋光到小于Ra0.2um,涂覆處理后的工件才可得到滿意的表面質量,這對成形一些具有光學性能要求的零件是非常重要的(如成形光學鏡頭和成形LED零件)。這里要注意的是基體表面處理不能留有死角,這關系到膜層是否能與基體牢固地結合。將要涂覆的工件還要充分清洗。清洗工藝取決于涂覆的質量水平、母材和幾何形狀。工件裝在設定的夾具上,夾具是在使腔體裝載尺寸Z好化和保證涂覆均勻的基礎上設計的。真空室抽真空至10-6托(高真空)來排除系統(tǒng)中的任何污染物。真空室中通入惰性氣體并使其離子化。導致產(chǎn)生輝光放電(等離子體)。類金剛石DLC涂層具有非常光滑的表面,其表面粗糙度可達到納米級別,能夠減少摩擦阻力和粘附力。工業(yè)零部件DLC涂層廠家

DLC涂層在機械領域中的應用。東莞次晶態(tài)DLC涂層工藝

DLC涂層C低摩擦產(chǎn)生原因有很多,究其底子在于滑動界面之間以及滑動界面與周圍環(huán)境之間的化學、物理和機械互相效果。為了確保DLC涂層的低摩擦系數(shù),要削弱相關因素的影響。下面,利晟納米小編為大家分析一下哪些因素影響DLC涂層摩擦系數(shù)吧。一、表面粗糙度的影響。需要留心的是,DLC膜表面粗糙度下降到必定程度時,表面越光滑,摩擦因數(shù)反而越大,因為削減乃至消除表面粗糙度后,表面分子間的互相效果力會成為產(chǎn)生摩擦的首要原因。二、分子間互相效果力的影響。從微觀視點分析,界面原子間的短程或長程效果力決議了摩擦力的強度,包括較強互相效果:金屬鍵、共價鍵和離子鍵等;較弱互相效果:π-π互相效果,范德華力,靜電力和毛細力等。1、共價鍵互相效果摩擦副相對滑動過程中,DLC膜表面sp3相碳原子中未成鍵的σ鍵易跨界面生成共價鍵:一種是上下表面的懸掛鍵之間構成C-C鍵;另一種是懸掛鍵與其他元素構成共價鍵,例如C-O-C鍵。共價鍵會導致較強的粘著效果,這是DLC涂層中摩擦力的首要來歷。2、π-π互相效果π-π互相效果也被稱為元堆積效果:DLC涂層中環(huán)狀結構之間的一種非共價的互相吸引效果,效果規(guī)模大于范德華半徑,這種效果力很弱,對摩擦因數(shù)影響較小。東莞次晶態(tài)DLC涂層工藝