在體多光子顯微鏡層析成像

來(lái)源: 發(fā)布時(shí)間:2025-01-12

多光子顯微鏡成像深度深、對(duì)比度高,在生物成像中具有重要意義,但通常需要較高的功率。結(jié)合時(shí)間傳播的超短脈沖可以實(shí)現(xiàn)超快的掃描速度和較深的成像深度,但近紅外波段的光本身會(huì)導(dǎo)致分辨率較低?;诙喙庾由限D(zhuǎn)換材料和時(shí)間編碼結(jié)構(gòu)光顯微鏡的高速超分辨成像系統(tǒng)(MUTE-SIM)是由清華大學(xué)教授和北京大學(xué)彭研究員合作開(kāi)發(fā)的??蓪?shí)現(xiàn)50MHz的超高掃描速度,突破衍射極限,實(shí)現(xiàn)超分辨率成像。與普通熒光顯微鏡相比,該顯微鏡經(jīng)過(guò)改進(jìn),只需要較低的激發(fā)功率。這種超快、低功耗、多光子超分辨率技術(shù)在高分辨率生物深層組織成像中具有長(zhǎng)遠(yuǎn)的應(yīng)用前景。多光子顯微鏡的發(fā)展現(xiàn)狀及未來(lái)發(fā)展趨勢(shì)。在體多光子顯微鏡層析成像

在體多光子顯微鏡層析成像,多光子顯微鏡

雙光子熒光顯微成像主要有以下優(yōu)點(diǎn)∶a.光損傷小∶雙光子熒光顯微鏡使用可見(jiàn)光或近紅外光作為激發(fā)光,對(duì)細(xì)胞和組織的光損傷很小,適合于長(zhǎng)時(shí)間的研究;b.穿透能力強(qiáng)∶相對(duì)于紫外光,可見(jiàn)光或近紅外光具有很強(qiáng)的穿透性,可以對(duì)生物樣品進(jìn)行深層次的研究;c.高分辨率∶由于雙光子吸收截面很小P,只有在焦平面很小的區(qū)域內(nèi)可以激發(fā)出熒光,雙光子吸收局限于焦點(diǎn)處的體積約為λ范圍內(nèi);d.漂白區(qū)域很小,焦點(diǎn)以外不發(fā)生漂白現(xiàn)象。e.熒光收集率高。與共聚焦成像相比,雙光子成像不需要光學(xué)濾波器,提高了熒光收集率。收集效率提高直接導(dǎo)致圖像對(duì)比度提高。f.對(duì)探測(cè)光路的要求低。由于激發(fā)光與發(fā)射熒光的波長(zhǎng)差值加大以及自發(fā)的三維濾波效果,多光子顯微鏡對(duì)光路收集系統(tǒng)的要求比單光子共焦顯微鏡低得多,光學(xué)系統(tǒng)相對(duì)簡(jiǎn)單。g.適合多標(biāo)記復(fù)合測(cè)量。許多染料熒光探針的多光子激發(fā)光譜要比單光子激發(fā)譜寬闊,這樣,可以利用單一波長(zhǎng)的激發(fā)光同時(shí)激發(fā)多種染料,從而得到同一生命現(xiàn)象中的不同信息,便于相互對(duì)照、補(bǔ)充。在體多光子顯微鏡層析成像OCT可以用于損傷修復(fù)監(jiān)測(cè)。Yeh等用OCT、多光子顯微鏡。

在體多光子顯微鏡層析成像,多光子顯微鏡

首代小型化雙光子顯微鏡在國(guó)際上獲得小鼠自由行為過(guò)程中大腦神經(jīng)元和突觸的動(dòng)態(tài)圖像后,我們成功研制了第二代小型化雙光子顯微鏡。它具有更大的成像視野和三維成像能力,可以清晰穩(wěn)定地對(duì)自由活動(dòng)小鼠三維腦區(qū)的數(shù)千個(gè)神經(jīng)元進(jìn)行成像,實(shí)現(xiàn)對(duì)同一批神經(jīng)元的一個(gè)月追蹤記錄。通過(guò)對(duì)微光學(xué)系統(tǒng)的重新設(shè)計(jì)系統(tǒng)的。微物鏡工作距離延長(zhǎng)至1mm,實(shí)現(xiàn)無(wú)創(chuàng)成像。內(nèi)嵌可拆卸的快速軸向掃描模塊,可采集深度180微米的3D體成像和多平面快速切換的實(shí)時(shí)成像。該掃描模塊由一個(gè)快速的電動(dòng)變焦透鏡和一對(duì)中繼透鏡組成,在不同深度成像時(shí)可保持放大倍率恒定。其變焦模塊重量,研究人員可根據(jù)實(shí)驗(yàn)需求自由拆卸。此外,新版微型化成像探頭可整體即時(shí)拔插,極大地簡(jiǎn)化了實(shí)驗(yàn)操作,避免了長(zhǎng)周期實(shí)驗(yàn)時(shí)對(duì)動(dòng)物的干擾。在重復(fù)裝卸探頭同一批神經(jīng)元時(shí),視場(chǎng)旋轉(zhuǎn)角小于,邊界偏差小于35微米。

使用MPM對(duì)神經(jīng)元進(jìn)行成像時(shí),通過(guò)隨機(jī)訪問(wèn)掃描—即激光束在整個(gè)視場(chǎng)上的任意選定點(diǎn)上進(jìn)行快速掃描—可以只掃描感興趣的神經(jīng)元,這樣不僅避免掃描到任何未標(biāo)記的神經(jīng)纖維,還可以優(yōu)化激光束的掃描時(shí)間。隨機(jī)訪問(wèn)掃描可以通過(guò)聲光偏轉(zhuǎn)器(AOD)來(lái)實(shí)現(xiàn),其原理是將具有一個(gè)射頻信號(hào)的壓電傳感器粘在合適的晶體上,所產(chǎn)生的聲波引起周期性的折射率光柵,激光束通過(guò)光柵時(shí)發(fā)生衍射。通過(guò)射頻電信號(hào)調(diào)控聲波的強(qiáng)度和頻率從而可以改變衍射光的強(qiáng)度和方向,這樣使用1個(gè)AOD就可以實(shí)現(xiàn)一維橫向的任意點(diǎn)掃描,利用1對(duì)AOD,結(jié)合其他軸向掃描技術(shù)可實(shí)現(xiàn)3D的隨機(jī)訪問(wèn)掃描。但是該技術(shù)對(duì)樣本的運(yùn)動(dòng)很敏感,易出現(xiàn)運(yùn)動(dòng)偽影。目前,快速光柵掃描即在FOV中進(jìn)行逐行掃描,由于利用算法可以輕松解決運(yùn)動(dòng)偽影而被普遍的使用。多光子顯微鏡技術(shù)的優(yōu)勢(shì)如何?又有哪些應(yīng)用?

在體多光子顯微鏡層析成像,多光子顯微鏡

現(xiàn)代分子生物學(xué)技術(shù)的迅速發(fā)展和科技的進(jìn)步,特別是隨著后基因組時(shí)代的到來(lái),人們已經(jīng)能夠根據(jù)需要建立各種細(xì)胞模型,為在體研究基因表達(dá)規(guī)律、分子間的相互作用、細(xì)胞的增殖、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、誘導(dǎo)分化、細(xì)胞凋亡以及新的血管生成等提供了良好的生物學(xué)條件。然而,盡管人們利用現(xiàn)有的分子生物學(xué)方法,已經(jīng)對(duì)基因表達(dá)和蛋白質(zhì)之間的相互作用進(jìn)行了深入、細(xì)致的研究,但仍然不能實(shí)現(xiàn)對(duì)蛋白質(zhì)和基因活動(dòng)的實(shí)時(shí)、動(dòng)態(tài)監(jiān)測(cè)。在細(xì)胞的生理過(guò)程中,基因、尤其是蛋白質(zhì)的表達(dá)、修飾和相萬(wàn)作用往往發(fā)生可逆的、動(dòng)態(tài)的變化。目前的分子生物學(xué)方法還不能捕獲到蛋白質(zhì)和基因的這些變化,但獲取這些信息對(duì)與研究基因的表達(dá)和蛋白質(zhì)之間的相互作用又至關(guān)重要。因此,發(fā)展能用于、動(dòng)態(tài)、實(shí)時(shí)、連續(xù)監(jiān)測(cè)蛋白質(zhì)和基因活動(dòng)的方法是非常必要的。帶寬足以覆蓋鈦藍(lán)寶石激光器的可調(diào)諧范圍和用于多光子顯微鏡的許多其它激光器的典型中心頻率。在體多光子顯微鏡層析成像

目前中國(guó)顯微鏡中如多光子顯微鏡、共聚焦掃描和電子顯微鏡等。在體多光子顯微鏡層析成像

多束掃描技術(shù)可以同時(shí)對(duì)神經(jīng)元組織的不同位置進(jìn)行成像對(duì)兩個(gè)遠(yuǎn)距離(相距大于1-2mm)的成像部位,通常使用兩條單獨(dú)的路徑進(jìn)行成像;對(duì)于相鄰區(qū)域,通常使用單個(gè)物鏡的多光束進(jìn)行成像。多光束掃描技術(shù)必須特別注意激發(fā)光束之間的串?dāng)_問(wèn)題,這個(gè)問(wèn)題可以通過(guò)事后光源分離方法或時(shí)空復(fù)用方法來(lái)解決。事后光源分離方法指的是用算法來(lái)分離光束消除串?dāng)_;時(shí)空復(fù)用方法指的是同時(shí)使用多個(gè)激發(fā)光束,每個(gè)光束的脈沖在時(shí)間上延遲,這樣就可以暫時(shí)分離被不同光束激發(fā)的單個(gè)熒光信號(hào)。引入越多路光束就可以對(duì)越多的神經(jīng)元進(jìn)行成像,但是多路光束會(huì)導(dǎo)致熒光衰減時(shí)間的重疊增加,從而限制了區(qū)分信號(hào)源的能力;并且多路復(fù)用對(duì)電子設(shè)備的工作速率有很高的要求;大量的光束也需要更高的激光功率來(lái)維持近似單光束的信噪比,這會(huì)容易導(dǎo)致組織損傷。在體多光子顯微鏡層析成像