甘肅目標(biāo)跟蹤解決

來(lái)源: 發(fā)布時(shí)間:2024-06-30

目標(biāo)檢測(cè)和跟蹤是計(jì)算機(jī)視覺(jué)領(lǐng)域中的重要任務(wù)之一。隨著深度學(xué)習(xí)的興起,YOLO(You Only Look Once)算法在目標(biāo)檢測(cè)和跟蹤領(lǐng)域引起了廣關(guān)注。YOLO算法是一種在實(shí)時(shí)目標(biāo)檢測(cè)和跟蹤領(lǐng)域具有重要地位的算法。通過(guò)引入卷積神經(jīng)網(wǎng)絡(luò)和一系列先進(jìn)技術(shù),YOLO算法在速度和準(zhǔn)確性方面取得了明顯的進(jìn)展。然而,仍然有一些挑戰(zhàn)需要解決,如目標(biāo)尺度變化、小目標(biāo)檢測(cè)和復(fù)雜背景干擾等。隨著研究的不斷深入和技術(shù)的不斷發(fā)展,YOLO算法有望在實(shí)時(shí)目標(biāo)檢測(cè)和跟蹤領(lǐng)域發(fā)揮更大的作用。RK3588作為慧視光電開(kāi)發(fā)的全國(guó)產(chǎn)化工業(yè)級(jí)板卡,具備高性能、高精度的優(yōu)點(diǎn)。甘肅目標(biāo)跟蹤解決

目標(biāo)跟蹤

視覺(jué)目標(biāo)跟蹤是指在視頻圖像序列的各幀圖像中找到被跟蹤的目標(biāo)。基于區(qū)域的跟蹤的基本思想是通過(guò)圖像分割或預(yù)先人為確定,提取包含著運(yùn)動(dòng)目標(biāo)的運(yùn)動(dòng)變化的區(qū)域范圍作為匹配的目標(biāo)模板,然后把目標(biāo)模板與實(shí)時(shí)圖像在所有可能位置上進(jìn)行疊加,然后計(jì)算某種圖像相似性度量的相應(yīng)值,其比較大相似性相對(duì)應(yīng)的位置就是目標(biāo)的位置,Jorge等人提出的區(qū)域跟蹤算法不僅利用了分割結(jié)果來(lái)給跟蹤提供信息,同時(shí)也能利用跟蹤所提供的信息改善分割效果,把連續(xù)幀的目標(biāo)匹配起來(lái)跟蹤目標(biāo)。廣東比較好的目標(biāo)跟蹤工程師以RK3588核心板為基礎(chǔ)進(jìn)行定制開(kāi)發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。

甘肅目標(biāo)跟蹤解決,目標(biāo)跟蹤

檢測(cè)器的輸出通常被用作跟蹤設(shè)備的輸入,跟蹤設(shè)備的輸出被提供給運(yùn)動(dòng)預(yù)測(cè)算法,該算法預(yù)測(cè)物體在接下來(lái)的幾秒鐘內(nèi)將移動(dòng)到哪里。然而,在無(wú)檢測(cè)跟蹤中,情況并非如此?;贒FT的模型要求必須在首幀中手動(dòng)初始化固定數(shù)量的對(duì)象,然后必須在隨后的幀中對(duì)這些對(duì)象進(jìn)行定位。DFT是一項(xiàng)困難的任務(wù),因?yàn)殛P(guān)于要跟蹤的對(duì)象的信息有限,而且這些信息不清楚。結(jié)果,初始邊界框與背景中的感興趣對(duì)象近似,并且對(duì)象的外觀可能隨著時(shí)間的推移而急劇改變。

目標(biāo)運(yùn)動(dòng)估計(jì)是根據(jù)目標(biāo)在過(guò)去的位置對(duì)目標(biāo)的運(yùn)動(dòng)規(guī)律加以總結(jié),并以此對(duì)目標(biāo)將來(lái)的運(yùn)動(dòng)狀態(tài)進(jìn)行預(yù)測(cè)。正確的預(yù)測(cè),可以縮小匹配的計(jì)算區(qū)域,大幅的降低匹配計(jì)算量。在視頻跟蹤系統(tǒng)中由于被跟蹤的目標(biāo)處于運(yùn)動(dòng)狀態(tài),為了把目標(biāo)始終保持在攝像機(jī)視野之內(nèi),必須對(duì)攝像機(jī)加以控制。在實(shí)際應(yīng)用中,攝像機(jī)被固定在云臺(tái)上,云臺(tái)本身不做平移運(yùn)動(dòng),但可以控制云臺(tái)進(jìn)行水平擺動(dòng)和上下俯仰,從而帶動(dòng)攝像機(jī)做相應(yīng)運(yùn)動(dòng)。所以,對(duì)攝像機(jī)的控制就是對(duì)云臺(tái)的控制。智能化的圖像處理板還可以實(shí)現(xiàn)自動(dòng)化的數(shù)據(jù)分析,實(shí)現(xiàn)降本增效。

甘肅目標(biāo)跟蹤解決,目標(biāo)跟蹤

在周界安防領(lǐng)域,傳統(tǒng)的攝像頭有畫(huà)無(wú)聲并不具備報(bào)警功能?;垡旳I圖像處理板能夠賦能監(jiān)控進(jìn)行AI識(shí)別,當(dāng)出現(xiàn)可疑人物有翻越等入侵行為時(shí),監(jiān)控能夠立即鎖定跟蹤目標(biāo)人物,并向安保室發(fā)出警報(bào),安保室人員能夠通過(guò)監(jiān)控的AI跟蹤鎖定找到可疑人員的移動(dòng)軌跡,便于糾察。此外,針對(duì)于夜間監(jiān)控的不足,慧視雙光吊艙識(shí)別裝置能夠?qū)崿F(xiàn)晝夜成像,白天通過(guò)可見(jiàn)光實(shí)現(xiàn)區(qū)域的監(jiān)控畫(huà)面,在夜晚通過(guò)紅外實(shí)現(xiàn)道路或者目標(biāo)區(qū)域的畫(huà)面成像,使得一些光線(xiàn)較差的區(qū)域也能實(shí)現(xiàn)清晰成像,避免被可疑人員鉆空。這樣就能在小區(qū)出入口、室外路口、周界、園區(qū)活動(dòng)空間、地下室以及高空拋物防控等重要區(qū)域,通過(guò)智能監(jiān)控聯(lián)動(dòng),實(shí)現(xiàn)小區(qū)全天候、24小時(shí)可視化報(bào)警監(jiān)控。通過(guò)及時(shí)預(yù)警通知,規(guī)避安全風(fēng)險(xiǎn),實(shí)現(xiàn)小區(qū)的安全管理。RK3588處理板,智慧視覺(jué)應(yīng)用開(kāi)發(fā)板。高效目標(biāo)跟蹤好選擇

RK3399搭載AI智能算法,實(shí)現(xiàn)目標(biāo)識(shí)別與跟蹤。甘肅目標(biāo)跟蹤解決

相關(guān)濾波的跟蹤算法始于2012年P(guān).Martins提出的CSK方法,作者提出了一種基于循環(huán)矩陣的核跟蹤方法,并且從數(shù)學(xué)上完美解決了密集采樣(Dense Sampling)的問(wèn)題,利用傅立葉變換快速實(shí)現(xiàn)了檢測(cè)的過(guò)程。在訓(xùn)練分類(lèi)器時(shí),一般認(rèn)為離目標(biāo)位置較近的是正樣本,而離目標(biāo)較遠(yuǎn)的認(rèn)為是負(fù)樣本。回顧前面提到的TLD或Struck,他們都會(huì)在每一幀中隨機(jī)地挑選一些塊進(jìn)行訓(xùn)練,學(xué)習(xí)到的特征是這些隨機(jī)子窗口的特征,而CSK作者設(shè)計(jì)了一個(gè)密集采樣的框架,能夠?qū)W習(xí)到一個(gè)區(qū)域內(nèi)所有圖像塊的特征。甘肅目標(biāo)跟蹤解決