增材制造(Additive Manufacturing,AM)俗稱3D打印,融合了計算機輔助設計、材料加工與成型技術、以數(shù)字模型文件為基礎,通過軟件與數(shù)控系統(tǒng)將專門使用的金屬材料、非金屬材料以及醫(yī)用生物材料,按照擠壓、燒結、熔融、光固化、噴射等方式逐層堆積,制造出實體物品的制造技術。相對于傳統(tǒng)的、對原材料去除-切削、組裝的加工模式不同,是一種“自下而上”通過材料累加的制造方法,從無到有。這使得過去受到傳統(tǒng)制造方式的約束,而無法實現(xiàn)的復雜結構件制造變?yōu)榭赡堋T霾闹圃燧喸谛阅芊矫嬉脖憩F(xiàn)出色。重慶TPP增材制造激光直寫
雖然半導體行業(yè)一直在使用3D打印技術,我們可能會有一個疑問,為什么我們沒有聽說,一個因素是競爭。如果全球只有四個龐大的大型公司,它們構成了光刻或制造機器的主要部分,那么這些公司并沒有告訴外界關于他們應用3D打印技術的內幕,因為他們想確保的競爭優(yōu)勢。至少,對外界揭示其優(yōu)化設備性能的技術,這種主觀動機并不強。增材制造改善半導體工藝是多方面的,從輕量化,到隨形冷卻,再到結構一體化實現(xiàn),根據(jù)3D科學谷的市場觀察,增材制造使得半導體設備中的零件性能邁向了一個新的進化時代!在許多情況下,3D打印-增材制造可能使這些系統(tǒng)能夠更接近理論上預期的工作環(huán)境,而不是在機器操作上做出妥協(xié)。3D打印帶來的直接好處包括更高的精度、更高的生產(chǎn)能力、更快的周期時間,甚至使得每臺機器每周生產(chǎn)更多的晶圓。某些情況下,還將看到整個晶片的成像質量更高。這將意味著更少的浪費和更高質量的產(chǎn)品海南微流道增材制造三維微納米加工系統(tǒng)增材制造為創(chuàng)新設計提供了更多可能性。
Nanoscribe是一家德國雙光子增材制造系統(tǒng)制造商,2019年6月25日,南極熊從外媒獲悉,該公司近日推出了一款新型的機器QuantumX。該系統(tǒng)使用雙光子光刻技術制造納米尺寸的折射和衍射微光學元件,其尺寸可小至200微米。根據(jù)Nanoscribe的聯(lián)合創(chuàng)始人兼CSOMichaelThiel博士的說法,“Beer's定律對當今的無掩模光刻設備施加了強大的限制,QuantumX采用雙光子灰度光刻技術,克服了這些限制,提供了前所未有的設計自由度和易用性,我們的客戶正在微加工的前沿工作
借助Nanoscribe的3D微納加工技術,您可以實現(xiàn)亞細胞結構的三維成像,適用于細胞研究和芯片實驗室應用(lab-on-a-chip)。我們的客戶成功使用Nanoscribe雙光子無掩模光刻系統(tǒng)制作了3D細胞支架來研究細胞生長、遷移和干細胞分化。此外,3D微納加工技術還可以應用在微創(chuàng)手術的生物醫(yī)學儀器,包括植入物,微針和微孔膜等制作。Nanoscribe的無掩模光刻系統(tǒng)在三維微納制造領域是一個不折不扣的多面手,由于其出色的通用性、與材料的普適性和便于操作的軟件工具,在科學和工業(yè)項目中備受青睞。這種可快速打印的微結構在科研、手板定制、模具制造和小批量生產(chǎn)中具有廣闊的應用前景。影響增材制造技術的因素你了解嗎?歡迎咨詢Nanoscribe在中國的子公司納糯三維科技(上海)有限公司。
Nanoscribe成立于2007年,作為卡爾斯魯厄理工學院研究小組的分拆,目前,Nanoscribe已經(jīng)成為納米和微米3D打印的出名企業(yè),并且在許多項目上都有所作為。Nanoscribe的激光光刻系統(tǒng)用于3D打印世界上特別小的強度高的3D晶格結構,它使用高精度激光來固化光刻膠中具有小至千分之一毫米特征的結構。換句話說,激光使基于液體的材料的小液滴內部的特定層硬化。為了進一步適應日益增長的業(yè)務,Nanoscribe還宣布將把設施搬遷到KIT投資3000萬歐元的蔡司創(chuàng)新中心。增材制造技術是一種三維實體快速自由成形制造新技術。山東2PP增材制造哪家好
激光增材制造將推動制造業(yè)向數(shù)字化、智能化方向發(fā)展。重慶TPP增材制造激光直寫
Nanoscribe的Photonic Professional GT2雙光子無掩模光刻系統(tǒng)的設計多功能性配合打印材料的多方面選擇性,可以實現(xiàn)微機械元件的制作,例如用光敏聚合物,納米顆粒復合物,或水凝膠打印的遠程操控可移動微型機器人,并可以選擇添加金屬涂層。此外,微納米器件也可以直接打印在不同的基材上,甚至可以直接打印于微機電系統(tǒng)(MEMS)。雙光子灰度光刻技術可以一步實現(xiàn)真正具有出色形狀精度的多級衍射光學元件(DOE),并且滿足DOE納米結構表面的橫向和縱向分辨率達到亞微米量級。由于需要多次光刻,刻蝕和對準工藝,衍射光學元件(DOE)的傳統(tǒng)制造耗時長且成本高重慶TPP增材制造激光直寫