廣東新型雙光子聚合三維光刻

來源: 發(fā)布時間:2024-10-01

Nanoscribe雙光子灰度光刻系統(tǒng)QuantumX,Nanoscribe的全球頭一次創(chuàng)建的工業(yè)級雙光子灰度光刻無掩模光刻系統(tǒng)QuantumX,適用于制造微光學衍射以及折射元件。Nanoscribe的全球頭一次創(chuàng)建工業(yè)級雙光子灰度光刻無掩模光刻系統(tǒng)QuantumX,適用于制造微光學衍射以及折射元件。利用Nanoscribe的雙光子聚合微納3D打印技術,斯圖加特大學和阿德萊德大學的研究人員聯(lián)手澳大利亞醫(yī)學研究中心的科學家們新研發(fā)的微型內窺鏡。將12050微米直徑的微光學器件直接打印在光纖上,構建了一款功能齊全的超薄像差校正光學相干斷層掃描探頭。這是迄今有報道的尺寸低值排名優(yōu)先的自由曲面3D成像探頭,包括導管鞘在內的直徑只為0.457mm。想要了解雙光子聚合技術運用在哪些領域請咨詢納糯三維科技(上海)有限公司。廣東新型雙光子聚合三維光刻

廣東新型雙光子聚合三維光刻,雙光子聚合

Nanoscribe的PhotonicProfessionalGT2雙光子無掩模光刻系統(tǒng)的設計多功能性配合打印材料的多方面選擇性,可以實現(xiàn)微機械元件的制作,例如用光敏聚合物,納米顆粒復合物,或水凝膠打印的遠程操控可移動微型機器人,并可以選擇添加金屬涂層。此外,微納米器件也可以直接打印在不同的基材上,甚至可以直接打印于微機電系統(tǒng)(MEMS)。PhotonicProfessionalGT2系統(tǒng)可以實現(xiàn)精度上限的3D打印,突破了微納米制造的限制。該打印系統(tǒng)的易用性和靈活性的特點配以特別廣的打印材料選擇使其成為理想的實驗研究儀器和多用戶設施。


卡爾斯魯厄新型雙光子聚合Nanoscribe中國分公司-納糯三維科技(上海)有限公司帶你了解雙光子聚合技術及其應用前景。

廣東新型雙光子聚合三維光刻,雙光子聚合

雙光子聚合是物質在發(fā)生雙光子吸收后所引發(fā)的光聚合過程。雙光子吸收是指物質的一個分子同時吸收兩個光子的過程,只能在強激光作用下發(fā)生,是一種強激光下光與物質相互作用的現(xiàn)象,屬于三階非線性效應的一種。雙光子吸收的發(fā)生主要在脈沖激光所產生的特別強激光的焦點處,光路上其他地方的激光強度不足以產生雙光子吸收,而由于所用光波長較長,能量較低,相應的單光子過程不能發(fā)生,因此,雙光子過程具有良好的空間選擇性。雙光子聚合利用了雙光子吸收過程對材料穿透性好、空間選擇性高的特點,在三維微加工、高密度光儲存及生物醫(yī)療領域有著巨大的應用前景,近年來已成為全球高新技術領域的一大研究熱點

對準雙光子光刻技術(A2PL®)是Nanoscribe基于雙光子聚合(2PP)的一種新型專利納米微納制造技術。該技術可以將打印的結構自動對準到光纖和光子芯片上,例如用于光子封裝中的光學互連。同時高精度檢測系統(tǒng)還可以識別基準點或拓撲基底特征,確保對3D打印進行高度精確的對準。Nanoscribe對準雙光可光刻技術搭配nanoPrintX,一種基于場景圖概念的軟件工具,可用于定義對準3D打印的打印項目。樹狀數(shù)據(jù)結構提供了所有與打印相關的對象和操作的分層組織,用于定義何時、何地、以及如何進行打印。在nanoPrintX中可以定義單個對準標記以及基板特征,例如芯片邊緣和光纖表面。使用QuantumXalign系統(tǒng)的共焦單元或光纖照明單元,可以識別這些特定的基板標記,并將其與在nanoPrintX中定義的數(shù)字模型進行匹配。對準雙光子光刻技術和nanoPrintX軟件是QuantumXalign系統(tǒng)的標配。雙光子聚合可以通過控制激光的光強和聚焦位置來實現(xiàn)加工的精度和形狀,表現(xiàn)出很強的可控性。

廣東新型雙光子聚合三維光刻,雙光子聚合

雙光子聚合技術的應用前景:1. 快速3D打?。弘p光子聚合技術可以用于快速3D打印。通過這種技術,可以實現(xiàn)高精度、高分辨率的3D打印,從而制造出更加精細、復雜的結構。這使得3D打印技術可以應用于更多領域,包括航空航天、醫(yī)療等高精度制造領域。2. 光子晶體形成:雙光子聚合技術可以用于光子晶體的制備。光子晶體是一種具有周期性折射率變化的介質,可以控制光的傳播路徑。利用雙光子聚合技術,可以制造出具有復雜結構和高質量的光子晶體,為光學器件和光子芯片的制備提供新的途徑。3. 高精度光子器件制造:雙光子聚合技術可以用于高精度光子器件的制造。例如,利用這種技術可以制造出高精度的光學鏡片、光纖等光子器件。這些器件在通訊、能源等領域具有廣泛的應用前景。4. 生物醫(yī)學領域應用:雙光子聚合技術還可以應用于生物醫(yī)學領域。例如,在生物組織工程中,可以利用這種技術制造出具有復雜結構和高度精確的生物材料。這些材料可以用于藥物輸送、組織修復等方面,為生物醫(yī)學研究提供新的工具和思路。哪些領域會運用雙光子聚合加工技術?卡爾斯魯厄新型雙光子聚合

事實上,雙光子聚合加工是在2001年開始真正應用在微納制造領域的。廣東新型雙光子聚合三維光刻

Nanoscribe公司的PhotonicProfessionalGT2系統(tǒng)把雙光子聚合技術融入強大了3D打印工作流程,實現(xiàn)了各種不同的打印方案。雙光子聚合技術用于3D微納結構的增材制造,可以通過激光直寫而避免使用昂貴的掩模版和復雜的光刻步驟來創(chuàng)建3D和2.5D微結構制作。PhotonicProfessionalGT2系統(tǒng)可以實現(xiàn)精度上限的3D打印,突破了微納米制造的限制。該打印系統(tǒng)的易用性和靈活性的特點配以比較廣的打印材料選擇使其成為理想的實驗研究儀器和多用戶設施。我們的3D微納加工技術可以滿足您對于制作亞微米分辨率和毫米級尺寸的復雜微機械元件的要求。3D設計的多功能性對于制作復雜且響應迅速的高精度微型機械,傳感器和執(zhí)行器是至關重要的。基于雙光子聚合原理的激光直寫技術,可適用于您的任何新穎創(chuàng)意的快速原型制作;也適合科學家和工程師們在無需額外成本增加的前提下,實現(xiàn)不同參數(shù)的創(chuàng)新3D結構的制作。


廣東新型雙光子聚合三維光刻