常見的設(shè)備監(jiān)測(cè)數(shù)據(jù)包含以下幾類:1.運(yùn)行數(shù)據(jù):包括設(shè)備的運(yùn)轉(zhuǎn)時(shí)間、運(yùn)轉(zhuǎn)速度、負(fù)載情況、溫度、壓力等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的運(yùn)行狀態(tài)和性能表現(xiàn),以便進(jìn)行運(yùn)行效率評(píng)估、健康狀況評(píng)估以及預(yù)測(cè)維護(hù)等。2.電氣數(shù)據(jù):包括設(shè)備的電流、電壓、功率、電阻等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的電氣性能和電能消耗情況,以便進(jìn)行能效評(píng)估、設(shè)備故障診斷等。3.振動(dòng)數(shù)據(jù):包括設(shè)備的振動(dòng)幅值、頻率、相位等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的振動(dòng)情況,以便進(jìn)行故障診斷和預(yù)測(cè)維護(hù)等。4.聲音數(shù)據(jù):包括設(shè)備的聲音頻率、聲音強(qiáng)度、聲音特征等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的聲學(xué)性能,以便進(jìn)行故障診斷和預(yù)測(cè)維護(hù)等。5.圖像數(shù)據(jù):包括設(shè)備的照片、視頻、紅外圖像等。這些數(shù)據(jù)可以反映設(shè)備的外觀、結(jié)構(gòu)、熱特性等信息,以便進(jìn)行故障診斷、安全檢查和維護(hù)計(jì)劃制定等。6.環(huán)境數(shù)據(jù):包括設(shè)備周圍環(huán)境的溫度、濕度、氣壓、光照等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備所處的環(huán)境條件,以便進(jìn)行設(shè)備健康評(píng)估、預(yù)測(cè)維護(hù)等。盈蓓德科技開發(fā)的監(jiān)測(cè)系統(tǒng)可以實(shí)現(xiàn)電機(jī)振動(dòng)、沖擊、加速度、運(yùn)動(dòng)監(jiān)測(cè)、控制及測(cè)試應(yīng)用的精確測(cè)量。杭州狀態(tài)監(jiān)測(cè)數(shù)據(jù)
刀具監(jiān)測(cè)主要采用人工檢測(cè)、離線檢測(cè)和在線檢測(cè)三種策略。人工檢查是指工人在加工過(guò)程中可以憑經(jīng)驗(yàn)檢查刀具的狀態(tài);離線檢測(cè)是在加工前專門對(duì)刀具進(jìn)行檢測(cè),預(yù)測(cè)其壽命,看是否能勝任當(dāng)前的加工;在線檢測(cè)又稱實(shí)時(shí)檢測(cè),是在加工過(guò)程中對(duì)刀具進(jìn)行實(shí)時(shí)檢測(cè),并根據(jù)檢測(cè)結(jié)果做出相應(yīng)的處理。目前刀具檢測(cè)的算法有很多,有的是利用理論計(jì)算刀具上應(yīng)力的變化來(lái)判斷刀具的損傷.有的是利用時(shí)間序列分析來(lái)檢測(cè)刀具,有的是利用神經(jīng)網(wǎng)絡(luò)技術(shù)來(lái)檢測(cè)刀具。還有的是利用小波變換理論和神經(jīng)網(wǎng)絡(luò)技術(shù)來(lái)檢測(cè)刀具,但都是以理論為主??紤]到刀具的塑性損傷在數(shù)控加工中很少發(fā)生,磨損對(duì)數(shù)控加工的安全性影響很小,并且可以通過(guò)離線檢測(cè)進(jìn)行加工,通過(guò)在線檢測(cè),可以判斷微裂紋在當(dāng)前載荷條件下是否會(huì)擴(kuò)展。如果有可能擴(kuò)大,我們認(rèn)為載 荷是危險(xiǎn)的,通過(guò)減少刀具的進(jìn)給量來(lái)減少刀具上的載荷,以保證刀具的安全性。產(chǎn)品質(zhì)量監(jiān)測(cè)控制策略系統(tǒng)可以實(shí)時(shí)采集旋轉(zhuǎn)設(shè)備的運(yùn)行狀態(tài)數(shù)據(jù),上傳到云平臺(tái)進(jìn)行直觀展示、預(yù)警報(bào)警、趨勢(shì)分析。
傳統(tǒng)方法通常無(wú)法自適應(yīng)提取特征, 同時(shí)需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測(cè)模型, 但目標(biāo)對(duì)象在線場(chǎng)景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測(cè)結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測(cè)算法, 未充分考慮樣本前后的時(shí)序關(guān)系, 容易因數(shù)據(jù)微小波動(dòng)而產(chǎn)生誤報(bào)警, 降低檢測(cè)結(jié)果的魯棒性; 再次, 為降低誤報(bào)警, 這類方法需要反復(fù)調(diào)整報(bào)警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想的診斷和檢測(cè)結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運(yùn)動(dòng)方程等信息, 對(duì)于軸承運(yùn)行過(guò)程來(lái)說(shuō), 這類信息通常不易獲知. 近年來(lái), 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征的自動(dòng)提取和識(shí)別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量的輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對(duì)象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測(cè)的特征表示效果; 另一方面, 在訓(xùn)練過(guò)程中未能針對(duì)早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測(cè)中的應(yīng)用仍存在較大的提升空間.
刀具監(jiān)測(cè)管理系統(tǒng)是我們基于精密加工行業(yè)特征,結(jié)合加工中心、車床等機(jī)械加工過(guò)程,打造的一款刀具狀態(tài)監(jiān)測(cè)和壽命預(yù)測(cè)分析系統(tǒng),通過(guò)采集主軸電流(負(fù)載)信號(hào)、位置信號(hào)、速度信號(hào)等30維度+數(shù)據(jù)信號(hào),結(jié)合大數(shù)據(jù)流式處理、自然語(yǔ)言處理等自學(xué)習(xí)處理算法和行業(yè)多年經(jīng)驗(yàn)數(shù)據(jù)沉淀,構(gòu)建的一套完整的刀具壽命預(yù)測(cè)和狀態(tài)監(jiān)控管理系統(tǒng),能夠?qū)崿F(xiàn)100%斷刀和崩刃監(jiān)控,磨損監(jiān)控識(shí)別率達(dá)到99%以上,同時(shí),提供基于刀具狀態(tài)監(jiān)測(cè)和壽命預(yù)測(cè)的異常停機(jī)控制模塊,避免因刀具異常導(dǎo)致的產(chǎn)品質(zhì)量損失和異常撞機(jī)事故,幫助用戶節(jié)約刀具成本30%以上,100%避免刀具異常帶來(lái)的產(chǎn)品質(zhì)量損失,為用戶提供無(wú)憂機(jī)加工過(guò)程管理!電機(jī)的狀態(tài)監(jiān)測(cè),以采集的電機(jī)電流和振動(dòng)信號(hào)為例,可以采用多特征融合的故障診斷方法。
工業(yè)設(shè)備的預(yù)測(cè)性維護(hù)的市場(chǎng)需求顯而易見。但是預(yù)防性維護(hù)想要產(chǎn)生業(yè)務(wù)價(jià)值、真正大規(guī)模發(fā)展卻是遇到了兩個(gè)難題。首先項(xiàng)目實(shí)施成本過(guò)高,硬件設(shè)備大多依賴進(jìn)口。比如數(shù)采傳感器、設(shè)備等。這導(dǎo)致很多企業(yè)在考慮投入產(chǎn)出比時(shí)比較猶豫。其次是技術(shù)需要突破,目前大多數(shù)供應(yīng)商只實(shí)現(xiàn)了設(shè)備狀態(tài)的監(jiān)視,真正能實(shí)現(xiàn)故障準(zhǔn)確預(yù)測(cè)的落地案例寥寥無(wú)幾。供應(yīng)商技術(shù)和能力還需要不斷升級(jí)。預(yù)防性維護(hù)要想實(shí)現(xiàn)更好的應(yīng)用,要在以下方面實(shí)現(xiàn)突破。實(shí)現(xiàn)基于預(yù)測(cè)的維護(hù),提升故障診斷及預(yù)測(cè)的準(zhǔn)確率提高軟硬件產(chǎn)品國(guó)產(chǎn)化率,降低實(shí)施成本。盈蓓德科技能為風(fēng)機(jī)提供早期有效預(yù)知傳動(dòng)鏈故障、軸承損傷、齒輪箱、發(fā)電機(jī)等故障的狀態(tài)監(jiān)測(cè)解決方案。杭州降噪監(jiān)測(cè)系統(tǒng)
設(shè)備狀態(tài)監(jiān)測(cè)系統(tǒng)可以判斷潛在故障隱患,診斷故障的性質(zhì)和程度,并預(yù)測(cè)故障發(fā)展趨勢(shì),給出治理預(yù)防策略。杭州狀態(tài)監(jiān)測(cè)數(shù)據(jù)
預(yù)測(cè)性維護(hù)對(duì)制造業(yè)在節(jié)省成本損耗、提升企業(yè)的生產(chǎn)效率和產(chǎn)業(yè)智能化升級(jí)具有非常重要的意義。國(guó)內(nèi)工業(yè)現(xiàn)場(chǎng)的存量設(shè)備數(shù)目相當(dāng)可觀,絕大多數(shù)還沒采用有效的預(yù)測(cè)性維護(hù)方案,尤其是大型旋轉(zhuǎn)類設(shè)備,一般都是主要生產(chǎn)運(yùn)行設(shè)備而且故障率相對(duì)較高,需要重點(diǎn)監(jiān)控和維護(hù)。通過(guò)振動(dòng)分析和診治對(duì)旋轉(zhuǎn)類設(shè)備進(jìn)行預(yù)防性維護(hù)無(wú)疑向我們展示了一個(gè)極具發(fā)展?jié)摿Φ氖袌?chǎng)。預(yù)測(cè)性維護(hù)在不久的未來(lái)將愈加凸顯工業(yè)物聯(lián)網(wǎng)中關(guān)鍵的應(yīng)用優(yōu)勢(shì),市場(chǎng)規(guī)模及需求將快速增長(zhǎng)杭州狀態(tài)監(jiān)測(cè)數(shù)據(jù)
上海盈蓓德智能科技有限公司目前已成為一家集產(chǎn)品研發(fā)、生產(chǎn)、銷售相結(jié)合的其他型企業(yè)。公司成立于2019-01-02,自成立以來(lái)一直秉承自我研發(fā)與技術(shù)引進(jìn)相結(jié)合的科技發(fā)展戰(zhàn)略。公司主要經(jīng)營(yíng)智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng)等,我們始終堅(jiān)持以可靠的產(chǎn)品質(zhì)量,良好的服務(wù)理念,優(yōu)惠的服務(wù)價(jià)格誠(chéng)信和讓利于客戶,堅(jiān)持用自己的服務(wù)去打動(dòng)客戶。盈蓓德,西門子致力于開拓國(guó)內(nèi)市場(chǎng),與電工電氣行業(yè)內(nèi)企業(yè)建立長(zhǎng)期穩(wěn)定的伙伴關(guān)系,公司以產(chǎn)品質(zhì)量及良好的售后服務(wù),獲得客戶及業(yè)內(nèi)的一致好評(píng)。上海盈蓓德智能科技有限公司以先進(jìn)工藝為基礎(chǔ)、以產(chǎn)品質(zhì)量為根本、以技術(shù)創(chuàng)新為動(dòng)力,開發(fā)并推出多項(xiàng)具有競(jìng)爭(zhēng)力的智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng)產(chǎn)品,確保了在智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng)市場(chǎng)的優(yōu)勢(shì)。