無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽(yù)
又一家上市公司“精工科技”選擇芯軟云“
智能排產(chǎn)功能在MES管理系統(tǒng)中有哪些應(yīng)用
心芯相連·共京能年|2024年芯軟智控企業(yè)年會(huì)網(wǎng)滿舉行
無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽(yù)
又一家上市公司“精工科技“選擇芯軟云!
新誠物業(yè)&芯軟智控:一封表揚(yáng)信,一面錦旗,是對(duì)芯軟智控的滿分
心芯相連·共京能年|2024年芯軟智控企業(yè)年會(huì)網(wǎng)滿舉行
無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽(yù)
了解MES生產(chǎn)管理系統(tǒng)的作用及優(yōu)勢(shì)?
現(xiàn)代化生產(chǎn)企業(yè)為了極大限度地提高生產(chǎn)水平和經(jīng)濟(jì)效益,不斷地向規(guī)?;透呒夹g(shù)技術(shù)含量發(fā)展,因此生產(chǎn)裝置趨向大型化、高速高效化、自動(dòng)化和連續(xù)化,人們對(duì)設(shè)備的要求不僅是性能好,效率高,還要求在運(yùn)行過程中少出故障,否則因故障停機(jī)帶來的損失是十分巨大的。國內(nèi)外化工、石化、電力、鋼鐵和航空等部門,從許多大型設(shè)備故障和事故中逐漸認(rèn)識(shí)到開展設(shè)備故障診斷的重要性。管理好用好這些大型設(shè)備,使其安全、可靠地運(yùn)行,成為設(shè)備管理中的突出任務(wù)。對(duì)于單機(jī)連續(xù)運(yùn)行的生產(chǎn)設(shè)備,停機(jī)損失巨大的大型機(jī)組和重大設(shè)備,不宜解體檢查的高精度設(shè)備以及發(fā)生故障后會(huì)引起公害的設(shè)備。傳統(tǒng)的事后維修和定期維修帶來的過剩維修或失修,使維修費(fèi)用在生產(chǎn)成本中所占比重很大。狀態(tài)監(jiān)測(cè)維修是在設(shè)備運(yùn)行時(shí),對(duì)它的各個(gè)主要部位產(chǎn)生的物理、化學(xué)信號(hào)進(jìn)行狀態(tài)監(jiān)測(cè),掌握設(shè)備的技術(shù)狀態(tài),對(duì)將要形成或已經(jīng)形成的故障進(jìn)行分析診斷,判定設(shè)備的劣化程度和部位,在故障產(chǎn)生前制訂預(yù)知性維修計(jì)劃,確定設(shè)備維修的內(nèi)容和時(shí)間。因此狀態(tài)監(jiān)測(cè)維修既能經(jīng)常保持設(shè)備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長(zhǎng)大修間隔,減少故障停機(jī)損失。盈蓓德科技提供一種滿足大型電機(jī)設(shè)備監(jiān)測(cè)要求,實(shí)現(xiàn)振動(dòng)數(shù)據(jù)采集及分析,造價(jià)較低的振動(dòng)監(jiān)測(cè)系統(tǒng)。紹興研發(fā)監(jiān)測(cè)價(jià)格
低信噪比微弱信號(hào)特征早期故障的信號(hào)處理。早期故障信息具有明顯的低信噪比微弱信號(hào)的特征,為實(shí)現(xiàn)早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測(cè)及信息融合,非平穩(wěn)及非線性信號(hào)處理,故障征兆量和損傷征兆量信號(hào)分析,噪聲規(guī)律與特點(diǎn)分析,以及相關(guān)數(shù)據(jù)挖掘、盲源分離、粗糙集等方法。故障預(yù)測(cè)模型構(gòu)建。構(gòu)建基于智能信息系統(tǒng)的設(shè)備早期故障預(yù)測(cè)模型,這類模型大致有兩個(gè)途徑,分別是物理信息預(yù)測(cè)模型以及數(shù)據(jù)信息預(yù)測(cè)模型,或構(gòu)建這兩類預(yù)測(cè)模型相融合的預(yù)測(cè)模型。運(yùn)行狀態(tài)劣化的相關(guān)評(píng)價(jià)參數(shù)、模式及準(zhǔn)則。如表征設(shè)備狀態(tài)發(fā)展的參數(shù)及特征模式,狀態(tài)發(fā)展評(píng)價(jià)準(zhǔn)則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評(píng)估依據(jù)及判據(jù)等。物聯(lián)網(wǎng)聲學(xué)監(jiān)控系統(tǒng),輔以其他設(shè)備參數(shù),通過物聯(lián)網(wǎng)技術(shù)實(shí)現(xiàn)設(shè)備狀態(tài)的遠(yuǎn)程感知,基于AI神經(jīng)網(wǎng)絡(luò)技術(shù),計(jì)算并提取設(shè)備音頻特征,從而實(shí)現(xiàn)設(shè)備運(yùn)行狀態(tài)的實(shí)時(shí)評(píng)估與故障的早期識(shí)別。幫助企業(yè)用戶提升生產(chǎn)效率,保證生產(chǎn)安全,優(yōu)化生產(chǎn)決策。紹興研發(fā)監(jiān)測(cè)價(jià)格盈蓓德科技順應(yīng)行業(yè)發(fā)展趨勢(shì),搭建一套基于旋轉(zhuǎn)類設(shè)備溫度,振動(dòng)狀態(tài)監(jiān)測(cè)、故障判斷的預(yù)測(cè)性維護(hù)系統(tǒng)。
刀具監(jiān)測(cè)主要采用人工檢測(cè)、離線檢測(cè)和在線檢測(cè)三種策略。人工檢查是指工人在加工過程中可以憑經(jīng)驗(yàn)檢查刀具的狀態(tài);離線檢測(cè)是在加工前專門對(duì)刀具進(jìn)行檢測(cè),預(yù)測(cè)其壽命,看是否能勝任當(dāng)前的加工;在線檢測(cè)又稱實(shí)時(shí)檢測(cè),是在加工過程中對(duì)刀具進(jìn)行實(shí)時(shí)檢測(cè),并根據(jù)檢測(cè)結(jié)果做出相應(yīng)的處理。目前刀具檢測(cè)的算法有很多,有的是利用理論計(jì)算刀具上應(yīng)力的變化來判斷刀具的損傷.有的是利用時(shí)間序列分析來檢測(cè)刀具,有的是利用神經(jīng)網(wǎng)絡(luò)技術(shù)來檢測(cè)刀具。還有的是利用小波變換理論和神經(jīng)網(wǎng)絡(luò)技術(shù)來檢測(cè)刀具,但都是以理論為主??紤]到刀具的塑性損傷在數(shù)控加工中很少發(fā)生,磨損對(duì)數(shù)控加工安全性影響很小,并且可以通過離線檢測(cè)進(jìn)行加工,通過在線檢測(cè),可以判斷微裂紋在當(dāng)前載荷條件下是否會(huì)擴(kuò)展。如果有可能擴(kuò)大,我們認(rèn)為載 荷是危險(xiǎn)的,通過減少刀具的進(jìn)給量來減少刀具上的載荷,以保證刀具安全性。
在預(yù)防性維護(hù)的應(yīng)用中,振動(dòng)是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是在大型旋轉(zhuǎn)機(jī)械設(shè)備的所有故障中,振動(dòng)問題出現(xiàn)的概率比較高;另一方面,振動(dòng)信號(hào)包含了豐富的機(jī)械及運(yùn)行的狀態(tài)信息;第三,振動(dòng)信號(hào)易于拾取,便于在不影響機(jī)械運(yùn)行的情況下實(shí)行在線監(jiān)測(cè)和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護(hù)需要重點(diǎn)監(jiān)控振動(dòng)量的變化。其預(yù)測(cè)性診斷技術(shù)對(duì)于制造業(yè)、風(fēng)電等的行業(yè)的運(yùn)維具有非常重大的意義。通過設(shè)備振動(dòng)等狀態(tài)的預(yù)測(cè)性維護(hù),可以及時(shí)發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對(duì)于一些不是因?yàn)樵O(shè)備問題而存在的固有振動(dòng),振動(dòng)強(qiáng)度的不必要增加會(huì)對(duì)部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動(dòng)隔離技術(shù)來解決和干預(yù),有效抑制振動(dòng)和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。基于人工智能算法的新型的電機(jī)故障預(yù)測(cè)系統(tǒng),適用范圍廣,能在更多的工業(yè)場(chǎng)合應(yīng)用。
電機(jī)故障監(jiān)測(cè)系統(tǒng),電機(jī)狀態(tài)檢測(cè)儀。電機(jī)故障監(jiān)測(cè)系統(tǒng)是采用現(xiàn)代電子技術(shù)和傳感器技術(shù),對(duì)電動(dòng)機(jī)運(yùn)行過程中的各種參數(shù)進(jìn)行實(shí)時(shí)在線檢測(cè)、分析、處理并作出相應(yīng)報(bào)警或指示的裝置。其基本功能包括:1、對(duì)電動(dòng)機(jī)的絕緣電阻、溫升等常規(guī)電氣參數(shù)和振動(dòng)、噪聲等機(jī)械量進(jìn)行測(cè)量;2、通過設(shè)定值比較法確定電機(jī)的實(shí)際工況;3、根據(jù)設(shè)定的報(bào)警閾值或動(dòng)作時(shí)間發(fā)出聲光報(bào)警信號(hào);4、通過通訊接口與plc或其它自動(dòng)化設(shè)備相連實(shí)現(xiàn)遠(yuǎn)程控制。設(shè)備監(jiān)測(cè)是指對(duì)設(shè)備運(yùn)行狀態(tài)進(jìn)行實(shí)時(shí)或定期的監(jiān)測(cè)和檢測(cè),以獲取設(shè)備的關(guān)鍵性能指標(biāo)、故障信息等數(shù)據(jù),并對(duì)這些數(shù)據(jù)進(jìn)行分析、處理和解釋,以便及時(shí)發(fā)現(xiàn)設(shè)備的健康狀況,并根據(jù)監(jiān)測(cè)結(jié)果制定相應(yīng)的維護(hù)計(jì)劃和改進(jìn)措施。設(shè)備監(jiān)測(cè)通常通過傳感器、監(jiān)測(cè)系統(tǒng)、計(jì)算機(jī)軟件等技術(shù)手段進(jìn)行實(shí)現(xiàn),以提高設(shè)備的可靠性、可用性和效率,降低設(shè)備故障率和維修成本,提高設(shè)備的生命周期價(jià)值。設(shè)備監(jiān)測(cè)在制造業(yè)、能源、交通、建筑、環(huán)保等領(lǐng)域得到廣泛應(yīng)用。設(shè)備監(jiān)測(cè)一般分為以下步驟:①從設(shè)備上收集數(shù)據(jù);②將收集到的數(shù)據(jù)傳輸至平臺(tái);③監(jiān)控和分析收集到的設(shè)備數(shù)據(jù)。故障診斷可以根據(jù)狀態(tài)監(jiān)測(cè)系統(tǒng)提供信息來查明失調(diào)的原因或性質(zhì),判斷劣化發(fā)生部位,以及預(yù)測(cè)狀態(tài)發(fā)展趨勢(shì)。無錫耐久監(jiān)測(cè)介紹
電機(jī)監(jiān)測(cè)系統(tǒng)可以識(shí)別處于初期階段的機(jī)械、電氣和液壓故障,從而制定更為合理的輔助維護(hù)計(jì)劃。紹興研發(fā)監(jiān)測(cè)價(jià)格
刀具監(jiān)測(cè)主要采用人工檢測(cè)、離線檢測(cè)和在線檢測(cè)三種策略。人工檢查是指工人在加工過程中可以憑經(jīng)驗(yàn)檢查刀具的狀態(tài);離線檢測(cè)是在加工前專門對(duì)刀具進(jìn)行檢測(cè),預(yù)測(cè)其壽命,看是否能勝任當(dāng)前的加工;在線檢測(cè)又稱實(shí)時(shí)檢測(cè),是在加工過程中對(duì)刀具進(jìn)行實(shí)時(shí)檢測(cè),并根據(jù)檢測(cè)結(jié)果做出相應(yīng)的處理。目前刀具檢測(cè)的算法有很多,有的是利用理論計(jì)算刀具上應(yīng)力的變化來判斷刀具的損傷.有的是利用時(shí)間序列分析來檢測(cè)刀具,有的是利用神經(jīng)網(wǎng)絡(luò)技術(shù)來檢測(cè)刀具。還有的是利用小波變換理論和神經(jīng)網(wǎng)絡(luò)技術(shù)來檢測(cè)刀具,但都是以理論為主??紤]到刀具的塑性損傷在數(shù)控加工中很少發(fā)生,磨損對(duì)數(shù)控加工的安全性影響很小,并且通過離線檢測(cè)進(jìn)行加工,通過在線檢測(cè),可以判斷微裂紋在當(dāng)前載荷條件下是否會(huì)擴(kuò)展。如果有可能擴(kuò)大,我們認(rèn)為載 荷是危險(xiǎn)的,通過減少刀具的進(jìn)給量來減少刀具上的載荷,以保證刀具的安全性。紹興研發(fā)監(jiān)測(cè)價(jià)格