基于交流電機的特征量:通過故障機理分析可知,交流電機運行過程中,其故障必然表現為一些特征參量的變化,根據診斷需要,選擇有代表性的特征參量為該設備在線監(jiān)測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準確性、微處理器的速度、A/D轉換的分辨率與轉換速度等硬件條件的限制,以及一般的數據處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調處理,就能方便地獲得故障特征信息,以確定電機設備所發(fā)生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換。盈蓓德科技開發(fā)的智能監(jiān)測系統實現了對電動機(馬達)、減速機等旋轉設備關鍵參數監(jiān)測、掌握設備運行狀態(tài)。無錫監(jiān)測介紹
工業(yè)設備的預測性維護的市場需求顯而易見。但是預防性維護想要產生業(yè)務價值、真正大規(guī)模發(fā)展卻是遇到了兩個難題。首先項目實施成本過高,硬件設備大多依賴進口。比如數采傳感器、設備等。這導致很多企業(yè)在考慮投入產出比時比較猶豫。其次是技術需要突破,目前大多數供應商只實現了設備狀態(tài)的監(jiān)視,真正能實現故障準確預測的落地案例寥寥無幾。供應商技術和能力還需要不斷升級。預防性維護要想實現更好的應用,要在以下方面實現突破。實現基于預測的維護,提升故障診斷及預測的準確率提高軟硬件產品國產化率,大幅度降低實施成本。杭州性能監(jiān)測公司電機監(jiān)測系統可以預判電機故障,發(fā)現潛在風險,防止代價高昂的停機并提高設備性能。
基于人工神經網絡的診斷方法簡單處理各單元連接而成的復雜的非線性系統,具有學習能力,自適應能力,非線性逼近能力等。故障診斷的任務從映射角度看就是從征兆到故障類型的映射。用ANN技術處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統具有自適應能力。基于集成型智能系統的診斷方法隨著電機設備系統越來越復雜,依靠單一的故障診斷技術已難滿足復雜電機設備的故障診斷要求,因此上述各種診斷技術集成起來形成的集成智能診斷系統成為當前電機設備故障診斷研究的熱點。主要的集成技術有:基于規(guī)則的**系統與ANN的結合,模糊邏輯與ANN的結合,混沌理論與ANN的結合,模糊神經網絡與**系統的結合。
隨著電力電子技術、自動化控制技術的不斷發(fā)展,電機在工業(yè)生產以及家用電器中得到了***的應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統的監(jiān)測方法要求監(jiān)測人員具有較高技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術實現要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監(jiān)測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術問題。盈蓓德科技順應行業(yè)發(fā)展趨勢,搭建一套基于旋轉類設備溫度,振動狀態(tài)監(jiān)測、故障判斷的預測性維護系統。
電機故障監(jiān)測系統,電機狀態(tài)檢測儀。電機故障監(jiān)測系統是采用現代電子技術和傳感器技術,對電動機運行過程中的各種參數進行實時在線檢測、分析、處理并作出相應報警或指示的裝置。其基本功能包括:1、對電動機的絕緣電阻、溫升等常規(guī)電氣參數和振動、噪聲等機械量進行測量;2、通過設定值比較法確定電機的實際工況;3、根據設定的報警閾值或動作時間發(fā)出聲光報警信號;4、通過通訊接口與plc或其它自動化設備相連實現遠程控制。設備監(jiān)測是指對設備運行狀態(tài)進行實時或定期的監(jiān)測和檢測,以獲取設備的關鍵性能指標、故障信息等數據,并對這些數據進行分析、處理和解釋,以便及時發(fā)現設備的健康狀況,并根據監(jiān)測結果制定相應的維護計劃和改進措施。設備監(jiān)測通常通過傳感器、監(jiān)測系統、計算機軟件等技術手段進行實現,以提高設備的可靠性、可用性和效率,降低設備故障率和維修成本,提高設備的生命周期價值。設備監(jiān)測在制造業(yè)、能源、交通、建筑、環(huán)保等領域得到廣泛應用。設備監(jiān)測一般分為以下步驟:①從設備上收集數據;②將收集到的數據傳輸至平臺;③監(jiān)控和分析收集到的設備數據。盈蓓德科技搭建了一套基于人人工智能算法的旋轉類設備溫度,振動狀態(tài)監(jiān)測、故障判斷和預測性維護系統。寧波功能監(jiān)測控制策略
電機狀態(tài)監(jiān)測技術可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,實現“預知”維修。無錫監(jiān)測介紹
針對刀具磨損狀態(tài)在實際生產加工過程中難以在線監(jiān)測這一問題,提出一種通過通信技術獲取機床內部數據,對當前的刀具磨損狀態(tài)進行識別的方法。通過采集機床內部實時數據并將其與實際加工情景緊密結合,能直接反映當前的加工狀態(tài)。將卷積神經網絡用于構建刀具磨損狀態(tài)識別模型,直接將采集到的數據作為輸入,得到了和傳統方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現都符合預期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現有數據是在相同的加工條件下測得的,而實際加工過程中,加工參數以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數試驗,考慮加工參數對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現自學習,不斷提升模型的精度和預測效果。無錫監(jiān)測介紹