無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽
又一家上市公司“精工科技”選擇芯軟云“
智能排產(chǎn)功能在MES管理系統(tǒng)中有哪些應用
心芯相連·共京能年|2024年芯軟智控企業(yè)年會網(wǎng)滿舉行
無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽
又一家上市公司“精工科技“選擇芯軟云!
新誠物業(yè)&芯軟智控:一封表揚信,一面錦旗,是對芯軟智控的滿分
心芯相連·共京能年|2024年芯軟智控企業(yè)年會網(wǎng)滿舉行
無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽
了解MES生產(chǎn)管理系統(tǒng)的作用及優(yōu)勢?
電機馬達監(jiān)控系統(tǒng)適用于石油、化工、電力、煤炭、冶金、造紙等行業(yè),可以實時對低壓電動機的運行狀態(tài)進行監(jiān)測,對電機各類故障進行監(jiān)測并存儲故障信息,可以生成各類實時曲線(電壓曲線、電流曲線等),為電機節(jié)能提供依據(jù),并可實現(xiàn)電機節(jié)能管理。系統(tǒng)特點:1、實時監(jiān)測電機回路石化、電力、水泥等電機用量大戶,需要對電機進行實時監(jiān)測,監(jiān)測內(nèi)容包括電機的電流、電壓、電能、頻率、電機狀態(tài)(起動、停止、報警、故障)等。在要求較高的場所還要對工藝參數(shù)進行監(jiān)測,例如溫度、壓力等。本系統(tǒng)不僅可以監(jiān)測電機電壓、電流還能做能耗統(tǒng)計,工藝參數(shù)監(jiān)測,可以大幅提高企業(yè)自動化程度。2、集中監(jiān)控,利于節(jié)能馬達監(jiān)控系統(tǒng)對用電大戶電機進行實時能耗監(jiān)測,監(jiān)測到的數(shù)據(jù)可以作為節(jié)能依據(jù),并可通過系統(tǒng)進行節(jié)能控制,利于電機節(jié)能應用。3、提高自動化水平.電機監(jiān)控系統(tǒng)是應用電力自動化技術(shù)、計算機技術(shù)和信息傳輸技術(shù),集保護、監(jiān)測、控制、通信等功能于一體的綜合系統(tǒng),盈蓓德科技開發(fā)的新型電機故障監(jiān)測系統(tǒng)借用物聯(lián)網(wǎng)、人工智能、邊緣計算等技術(shù),提前預判設備故障。溫州耐久監(jiān)測系統(tǒng)供應商
電機狀態(tài)監(jiān)測故障診斷技術(shù)是一種了解和掌握電機在使用過程中的狀態(tài),確定其整體或局部正?;虍惓?,早期發(fā)現(xiàn)故障及其原因,并能預報故障發(fā)展趨勢的技術(shù),電機狀態(tài)監(jiān)測與故障診斷技術(shù)包括識別電機狀態(tài)監(jiān)測和預測發(fā)展趨勢兩方面。設備狀態(tài)是指設備運行的工況,由設備運行過程中的各種性能參數(shù)以及設備運行過程中產(chǎn)生的二次效應參數(shù)和產(chǎn)品質(zhì)量指標參數(shù)來描述。設備狀態(tài)的類型包括:正常、異常和故障三種。設備狀態(tài)監(jiān)測是通過測定以上參數(shù),并進行分析處理,根據(jù)分析處理結(jié)果判定設備狀態(tài)。對設備進行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結(jié)合設備的歷史狀況和運行條件,弄清設備的客觀狀態(tài),獲取設備性能發(fā)展的趨勢規(guī)律,為設備的性能評價、合理使用、安全運行、故障診斷及設備自動控制打下基礎。杭州設備監(jiān)測應用盈蓓德科技提供一種滿足大型電機設備監(jiān)測要求,實現(xiàn)振動數(shù)據(jù)采集及分析,造價較低的振動監(jiān)測系統(tǒng)。
現(xiàn)代化生產(chǎn)企業(yè)為了極大限度地提高生產(chǎn)水平和經(jīng)濟效益,不斷地向規(guī)模化和高技術(shù)技術(shù)含量發(fā)展,因此生產(chǎn)裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內(nèi)外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續(xù)運行的生產(chǎn)設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發(fā)生故障后會引起公害的設備。傳統(tǒng)的事后和定期維修帶來的過剩維修或失修,使維修費用在生產(chǎn)成本中所占比重很大。狀態(tài)監(jiān)測維修是在設備運行時,對它的各個主要部位產(chǎn)生的物理、化學信號進行狀態(tài)監(jiān)測,掌握設備的技術(shù)狀態(tài),對將要形成或已經(jīng)形成的故障進行分析診斷,判定設備的劣化程度和部位,在故障產(chǎn)生前制訂預知性維修計劃,確定設備維修的內(nèi)容和時間。因此狀態(tài)監(jiān)測維修既能經(jīng)常保持設備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,減少故障停機損失。
針對刀具磨損狀態(tài)在實際生產(chǎn)加工過程中難以在線監(jiān)測這一問題,提出一種通過通信技術(shù)獲取機床內(nèi)部數(shù)據(jù),對當前的刀具磨損狀態(tài)進行識別的方法。通過采集機床內(nèi)部實時數(shù)據(jù)并將其與實際加工情景緊密結(jié)合,能直接反映當前加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡用于構(gòu)建刀具磨損狀態(tài)識別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現(xiàn)都符合預期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測得的,而實際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數(shù)試驗,考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據(jù)實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現(xiàn)自學習,不斷提升模型的精度和預測效果。電機監(jiān)測和故障預判系統(tǒng)是實現(xiàn)工業(yè)設備數(shù)智化管理和預測性維護的關(guān)鍵。
隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了的應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準確。有些場合需要進行電機多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術(shù)實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電流、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術(shù)問題。盈蓓德科技開發(fā)的電機監(jiān)測和故障預判系統(tǒng),助力實現(xiàn)工業(yè)設備數(shù)智化管理和預測性維護。常州狀態(tài)監(jiān)測應用
盈蓓德科技可以搭建造價低廉,性能穩(wěn)定,安裝方便,功能實用,使用簡單,維護工作量少的電機振動監(jiān)測系統(tǒng)。溫州耐久監(jiān)測系統(tǒng)供應商
針對刀具磨損狀態(tài)在實際生產(chǎn)加工過程中難以在線監(jiān)測這一問題,提出一種通過通信技術(shù)獲取機床內(nèi)部數(shù)據(jù),對當前的刀具磨損狀態(tài)進行識別的方法。通過采集機床內(nèi)部實時數(shù)據(jù)并將其與實際加工情景緊密結(jié)合,能直接反映當前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡用于構(gòu)建刀具磨損狀態(tài)識別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現(xiàn)都符合預期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測得的,而實際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數(shù)試驗,考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景,通過獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據(jù)實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現(xiàn)自學習,不斷提升模型的精度和預測效果。溫州耐久監(jiān)測系統(tǒng)供應商