從整體的網(wǎng)絡(luò)架構(gòu)來看,智能振動噪聲監(jiān)診子系統(tǒng)利用安裝在設(shè)備上傳感器節(jié)點獲取設(shè)備的健康狀態(tài)監(jiān)測信號和運行參數(shù)數(shù)據(jù),經(jīng)網(wǎng)絡(luò)層集中上傳至設(shè)備健康監(jiān)測物聯(lián)網(wǎng)綜合管理平臺,實現(xiàn)數(shù)據(jù)傳輸。應(yīng)用層實現(xiàn)監(jiān)測信號的分析?故障特征提取?故障診斷及預(yù)測功能,實現(xiàn)智能化管理?應(yīng)用和服務(wù)。設(shè)備健康監(jiān)測物聯(lián)網(wǎng)綜合管理平臺具有強大的數(shù)據(jù)采集分析處理?數(shù)據(jù)可視?設(shè)備運維?故障診斷?故障報警等功能。通過實時監(jiān)測查看?統(tǒng)計?追溯,實現(xiàn)對其管轄設(shè)備的實時監(jiān)測和運行維護,基于運行信息和檢修信息?自動生成設(shè)備管理報表,實現(xiàn)設(shè)備可靠性?故障數(shù)據(jù)?更換備件等信息統(tǒng)計,為維修方案提供依據(jù)。測量電機關(guān)鍵參數(shù),利用AI融合工業(yè)機理算法,構(gòu)建各類故障模型庫,實現(xiàn)邊緣側(cè)數(shù)據(jù)實時分析和決策。杭州發(fā)動機監(jiān)測系統(tǒng)
基于人工神經(jīng)網(wǎng)絡(luò)的診斷方法簡單處理單元連接而成的復(fù)雜的非線性系統(tǒng),具有學(xué)習(xí)能力,自適應(yīng)能力,非線性逼近能力等。故障診斷的任務(wù)從映射角度看就是從征兆到故障類型的映射。用ANN技術(shù)處理故障診斷問題,不僅能進行復(fù)雜故障診斷模式的識別,還能進行故障嚴(yán)重性評估和故障預(yù)測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應(yīng)能力。基于集成型智能系統(tǒng)的診斷方法隨著電機設(shè)備系統(tǒng)越來越復(fù)雜,依靠單一的故障診斷技術(shù)已難滿足復(fù)雜電機設(shè)備的故障診斷要求,因此上述各種診斷技術(shù)集成起來形成的集成智能診斷系統(tǒng)成為當(dāng)前電機設(shè)備故障診斷研究的熱點。主要的集成技術(shù)有:基于規(guī)則的系統(tǒng)與ANN的結(jié)合,模糊邏輯與ANN的結(jié)合,混沌理論與ANN的結(jié)合,模糊神經(jīng)網(wǎng)絡(luò)與系統(tǒng)的結(jié)合。無錫狀態(tài)監(jiān)測技術(shù)盈蓓德科技可以提供故障預(yù)判準(zhǔn)確率高,更經(jīng)濟更可靠的旋轉(zhuǎn)設(shè)備健康狀態(tài)監(jiān)測方案。
傳統(tǒng)維護模式中的故障后維護與定期維護將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計算、機器學(xué)習(xí)與傳感器等技術(shù)的成熟,預(yù)測性維護技術(shù)應(yīng)運而生。以各類如電機、軸承等設(shè)備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測階段,來實現(xiàn)查看設(shè)備是否需要維護、怎么安排維護時間來減少計劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實現(xiàn)電機設(shè)備的預(yù)測性維護。電動機是機械加工中不可或缺的必備工具,電動機在運轉(zhuǎn)中常產(chǎn)生各種故障,為保證電動機運行安全,對電動機運行狀態(tài)進行在線監(jiān)測尤為重要。
以三相異步電動機為研究對象,采用傳感器獲取電動機運行中的重要參數(shù)(振動、噪聲、轉(zhuǎn)速及溫度等),由時/頻域分析及能量分析等方法提取電動機運行特征量,構(gòu)成特征向量,采用BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練的方法建立狀態(tài)識別模型,通過BP神經(jīng)網(wǎng)絡(luò)模式識別方法,判斷電動機運行的狀態(tài),在此基礎(chǔ)上,利用LabVIEW軟件構(gòu)建可視化監(jiān)測系統(tǒng),將電動機運行參數(shù)及狀態(tài)實時顯示在可視化界面中,完成在線智能監(jiān)測。
電機等振動設(shè)備在運行中,伴隨著一些安全問題,振動數(shù)據(jù)會發(fā)生變化,如果不及時發(fā)現(xiàn),容易導(dǎo)致起火或,造成大量的財產(chǎn)損失,而這些問題具有突發(fā)性和不準(zhǔn)確性,難以預(yù)知,應(yīng)對這種情況,需要一種手段去解決。無線振動傳感器直接讀取原始加速度數(shù)據(jù),準(zhǔn)確可靠,避免后期計算出現(xiàn)較大誤差。本傳感器采用無線通訊方式,低功耗設(shè)計,一次性鋰亞電池供電,具有容量大、耐高溫、不宜爆等特點,工作原理:將傳感器分布式安裝在各類電機、風(fēng)機、振動平臺、回轉(zhuǎn)窯、傳送設(shè)備等需要振動監(jiān)測的設(shè)備上實時采集振動數(shù)據(jù),然后通過無線方式將數(shù)據(jù)發(fā)送給采集端,采集端將數(shù)據(jù)解析、顯示或傳輸。系統(tǒng)能實時在線監(jiān)測出設(shè)備異常,發(fā)出預(yù)警,避免事故發(fā)生。產(chǎn)品特點(1)實時性:系統(tǒng)實時在線監(jiān)測電機等振動參數(shù),避免了由于電機突然缺相、線圈故障,堵轉(zhuǎn)、固定螺栓松動、負(fù)載過高和人為錯誤操作等發(fā)生的事故。(2)便捷性:系統(tǒng)采用無線傳輸方式,傳感器安裝,解決了以往因為空間狹小、不能布線、安裝成本高等問題。(3)可靠性:系統(tǒng)采用先進成熟的傳感技術(shù)和無線傳輸技術(shù),抗干擾力強,傳輸距離遠,讀數(shù)準(zhǔn)確,可靠性高。β-Star監(jiān)測系統(tǒng)是盈蓓德智能科技的產(chǎn)品,為大型電機提供數(shù)據(jù)監(jiān)測和故障預(yù)判服務(wù)。
在預(yù)防性維護的應(yīng)用中,振動是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是在大型旋轉(zhuǎn)機械設(shè)備的所有故障中,振動問題出現(xiàn)的概率比較高;第二,振動信號包含了豐富的機械及運行的狀態(tài)信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監(jiān)測和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護需要重點監(jiān)控振動量的變化。其預(yù)測性診斷技術(shù)對于制造業(yè)、風(fēng)電等的行業(yè)的運維具有非常重大的意義。通過設(shè)備振動等狀態(tài)的預(yù)測性維護,可以及時發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對于一些不是因為設(shè)備問題而存在的固有振動,振動強度的不必要增加會對部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動隔離技術(shù)來解決和干預(yù),有效抑制振動和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。電機監(jiān)測系統(tǒng)可以識別處于初期階段的機械和液壓故障,從而制定更為合理的輔助維護計劃。杭州監(jiān)測設(shè)備
盈蓓德科技搭建了一套基于人人工智能算法的旋轉(zhuǎn)類設(shè)備溫度,振動狀態(tài)監(jiān)測、故障判斷和預(yù)測性維護系統(tǒng)。杭州發(fā)動機監(jiān)測系統(tǒng)
故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計概率、信號處理、機器學(xué)習(xí)和統(tǒng)計學(xué)習(xí)等技術(shù)搭建模型算法,**終實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計概率、信號處理、機器學(xué)習(xí)和統(tǒng)計學(xué)習(xí)等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標(biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及準(zhǔn)算數(shù)均值比數(shù)學(xué)框架指引了稀疏測度構(gòu)造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度等具有等價性能的稀疏測度?;跇?biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機器學(xué)習(xí)算法,
可以利用模型權(quán)重來實時確認(rèn)故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領(lǐng)域傳統(tǒng)機器學(xué)習(xí)只能輸出狀態(tài),而無法提供故障特征來確認(rèn)輸出狀態(tài)的難題。 杭州發(fā)動機監(jiān)測系統(tǒng)