個(gè)性化需求,專屬服務(wù):海綿定制如何滿足多樣化市場(chǎng)-海綿定制
如何選擇合適的過濾綿:提升過濾效率與延長(zhǎng)使用壽命-過濾綿
揭秘物流網(wǎng)格海綿:如何在運(yùn)輸中提供良好緩沖效果-網(wǎng)格海綿
寵物海綿爬梯:為寵物量身定制的沙發(fā)與床間通行神器-海綿爬梯
寵物友好家居設(shè)計(jì):海綿爬梯讓沙發(fā)、樓梯、床觸手可及-海綿爬梯
如何挑選高效耐用的杯刷海綿:一份實(shí)用的購(gòu)買指南-杯刷海綿
淘氣堡海綿材質(zhì)對(duì)比,哪種更適合你家孩子-淘氣堡海綿
海綿鞋擦:輕松去除鞋面污漬-海綿鞋擦
高效去除洗衣機(jī)內(nèi)毛發(fā):洗衣球海綿的神奇功效-洗衣球海綿
寵物海綿爬梯:安全、舒適且有趣-小型寵物海綿爬梯輔助器報(bào)價(jià)
在預(yù)防性維護(hù)的應(yīng)用中,振動(dòng)是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是在大型旋轉(zhuǎn)機(jī)械設(shè)備的所有故障中,振動(dòng)問題出現(xiàn)的概率比較高;另一方面,振動(dòng)信號(hào)包含了豐富的機(jī)械及運(yùn)行的狀態(tài)信息;第三,振動(dòng)信號(hào)易于拾取,便于在不影響機(jī)械運(yùn)行的情況下實(shí)行在線監(jiān)測(cè)和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護(hù)需要重點(diǎn)監(jiān)控振動(dòng)量的變化。其預(yù)測(cè)性診斷技術(shù)對(duì)于制造業(yè)、風(fēng)電等的行業(yè)的運(yùn)維具有非常重大的意義。通過設(shè)備振動(dòng)等狀態(tài)的預(yù)測(cè)性維護(hù),可以及時(shí)發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對(duì)于一些不是因?yàn)樵O(shè)備問題而存在的固有振動(dòng),振動(dòng)強(qiáng)度不必要增加會(huì)對(duì)部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動(dòng)隔離技術(shù)來(lái)解決和干預(yù),有效抑制振動(dòng)和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。監(jiān)測(cè)結(jié)果的分析可以幫助我們了解產(chǎn)品的優(yōu)勢(shì)和不足之處。常州電力監(jiān)測(cè)設(shè)備
柴油機(jī)狀態(tài)監(jiān)測(cè)與故障診斷系統(tǒng)是一個(gè)集數(shù)據(jù)采集與分析、狀態(tài)監(jiān)測(cè)、故障診斷為一體的多任務(wù)處理系統(tǒng),可實(shí)現(xiàn)柴油機(jī)監(jiān)測(cè)、保護(hù)、分析、診斷等功能。包括數(shù)據(jù)采集與工況監(jiān)測(cè)、活塞缸套磨損監(jiān)測(cè)分析、主軸承磨損狀態(tài)監(jiān)測(cè)分析、氣閥間隙異常監(jiān)測(cè)分析和瞬時(shí)轉(zhuǎn)速監(jiān)測(cè)分析等各種功能。信號(hào)分析、特征提取及診斷原理是每個(gè)監(jiān)測(cè)診斷子功能部分,各子功能都有相應(yīng)的信號(hào)分析與特征提取方法,包括信號(hào)預(yù)處理、時(shí)域、頻域分析、小波分析等,自動(dòng)形成反映柴油機(jī)運(yùn)行狀態(tài)的特征量,為系統(tǒng)的診斷推理提供信息來(lái)源。采用模糊聚類理論來(lái)檢驗(yàn)特征參量的有效性、建立故障標(biāo)準(zhǔn)征兆群,并運(yùn)用模糊貼近度來(lái)實(shí)施故障類型的診斷識(shí)別?;谌斯ど窠?jīng)網(wǎng)絡(luò)的診斷方法簡(jiǎn)單處理單元連接而成的復(fù)雜的非線性系統(tǒng),具有學(xué)習(xí)能力,自適應(yīng)能力,非線性逼近能力等。故障診斷的任務(wù)從映射角度看就是從征兆到故障類型的映射。用ANN技術(shù)處理故障診斷問題,不僅能進(jìn)行復(fù)雜故障診斷模式的識(shí)別,還能進(jìn)行故障嚴(yán)重性評(píng)估和故障預(yù)測(cè),由于ANN能自動(dòng)獲取診斷知識(shí),使診斷系統(tǒng)具有自適應(yīng)能力。南通混合動(dòng)力系統(tǒng)監(jiān)測(cè)特點(diǎn)監(jiān)測(cè)工作需要關(guān)注新產(chǎn)品的研發(fā)和上市情況,以了解市場(chǎng)的反應(yīng)和需求。
工業(yè)設(shè)備的預(yù)測(cè)性維護(hù)的市場(chǎng)需求顯而易見。但是預(yù)防性維護(hù)想要產(chǎn)生大的業(yè)務(wù)價(jià)值、真正大規(guī)模發(fā)展卻是遇到了兩個(gè)難題。首先項(xiàng)目實(shí)施成本過高,硬件設(shè)備大多依賴進(jìn)口。這導(dǎo)致很多企業(yè)在考慮投入產(chǎn)出比時(shí)比較猶豫。其次是技術(shù)需要突破,目前大多數(shù)供應(yīng)商只實(shí)現(xiàn)了設(shè)備狀態(tài)的監(jiān)視,真正能實(shí)現(xiàn)故障準(zhǔn)確預(yù)測(cè)的落地案例寥寥無(wú)幾。供應(yīng)商技術(shù)和能力還需要不斷升級(jí)。預(yù)防性維護(hù)要想實(shí)現(xiàn)更好的應(yīng)用,要在以下方面實(shí)現(xiàn)突破。實(shí)現(xiàn)基于預(yù)測(cè)的維護(hù),提升故障診斷及預(yù)測(cè)的準(zhǔn)確率提高軟硬件產(chǎn)品國(guó)產(chǎn)化率,降低實(shí)施成本.
電機(jī)監(jiān)測(cè)是對(duì)電機(jī)運(yùn)行狀態(tài)進(jìn)行實(shí)時(shí)監(jiān)測(cè)和分析的過程。通過監(jiān)測(cè)電機(jī)的電流、電壓、轉(zhuǎn)速等參數(shù),可以了解電機(jī)的工作狀態(tài)和性能表現(xiàn)。電機(jī)監(jiān)測(cè)可以幫助及時(shí)發(fā)現(xiàn)電機(jī)故障或異常情況,并采取相應(yīng)的措施進(jìn)行修復(fù)或調(diào)整,以確保電機(jī)的安全運(yùn)行和高效工作。電機(jī)監(jiān)測(cè)還可以提供有關(guān)電機(jī)的運(yùn)行數(shù)據(jù)和報(bào)告,為電機(jī)維護(hù)和管理提供參考依據(jù)。通過電機(jī)監(jiān)測(cè),可以提高電機(jī)的可靠性和壽命,減少停機(jī)時(shí)間和維修成本。此外,電機(jī)監(jiān)測(cè)還可以優(yōu)化電機(jī)的運(yùn)行效率和能耗,提高能源利用效率。在現(xiàn)代工業(yè)生產(chǎn)中,電機(jī)監(jiān)測(cè)已經(jīng)成為不可或缺的環(huán)節(jié),對(duì)于提高生產(chǎn)效率和質(zhì)量具有重要意義。盈蓓德科技可以搭建造價(jià)低廉,性能穩(wěn)定,安裝方便,功能實(shí)用,使用簡(jiǎn)單,維護(hù)工作量少的電機(jī)振動(dòng)監(jiān)測(cè)系統(tǒng)。
傳統(tǒng)維護(hù)模式中的故障后維護(hù)與定期維護(hù)將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計(jì)算、機(jī)器學(xué)習(xí)與傳感器等技術(shù)的成熟,預(yù)測(cè)性維護(hù)技術(shù)應(yīng)運(yùn)而生。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測(cè)階段,來(lái)實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、怎么安排維護(hù)時(shí)間來(lái)減少計(jì)劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個(gè)網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來(lái)實(shí)現(xiàn)電機(jī)設(shè)備的預(yù)測(cè)性維護(hù)。電動(dòng)機(jī)是機(jī)械加工中不可或缺的必備工具,電動(dòng)機(jī)在運(yùn)轉(zhuǎn)中常產(chǎn)生各種故障,為保證電動(dòng)機(jī)運(yùn)行安全,對(duì)電動(dòng)機(jī)運(yùn)行狀態(tài)進(jìn)行在線監(jiān)測(cè)尤為重要。
以三相異步電動(dòng)機(jī)為研究對(duì)象,采用傳感器獲取電動(dòng)機(jī)運(yùn)行中的重要參數(shù)(振動(dòng)、噪聲、轉(zhuǎn)速及溫度等),由時(shí)/頻域分析及能量分析等方法提取電動(dòng)機(jī)運(yùn)行特征量,構(gòu)成特征向量,采用BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練的方法建立狀態(tài)識(shí)別模型,通過BP神經(jīng)網(wǎng)絡(luò)模式識(shí)別方法,判斷電動(dòng)機(jī)運(yùn)行的狀態(tài),在此基礎(chǔ)上,利用LabVIEW軟件構(gòu)建可視化監(jiān)測(cè)系統(tǒng),將電動(dòng)機(jī)運(yùn)行參數(shù)及狀態(tài)實(shí)時(shí)顯示在可視化界面中,完成在線智能監(jiān)測(cè)。 監(jiān)測(cè)工作需要及時(shí)更新數(shù)據(jù),以保持對(duì)市場(chǎng)的了解。紹興旋轉(zhuǎn)機(jī)械監(jiān)測(cè)方案
電機(jī)監(jiān)測(cè)和故障預(yù)判系統(tǒng)應(yīng)用行業(yè)很多,助力實(shí)現(xiàn)工業(yè)設(shè)備數(shù)智化管理和預(yù)測(cè)性維護(hù)。常州電力監(jiān)測(cè)設(shè)備
傳統(tǒng)方法通常無(wú)法自適應(yīng)提取特征, 同時(shí)需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測(cè)模型, 但目標(biāo)對(duì)象在線場(chǎng)景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測(cè)結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測(cè)算法, 未充分考慮樣本前后的時(shí)序關(guān)系, 容易因數(shù)據(jù)微小波動(dòng)而產(chǎn)生誤報(bào)警, 降低檢測(cè)結(jié)果的魯棒性; 再次, 為降低誤報(bào)警, 這類方法需要反復(fù)調(diào)整報(bào)警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想的診斷和檢測(cè)結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運(yùn)動(dòng)方程等信息, 對(duì)于軸承運(yùn)行來(lái)說(shuō), 這類信息通常不易獲知. 近年來(lái), 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征的自動(dòng)提取和識(shí)別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對(duì)象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測(cè)的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對(duì)早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測(cè)中的應(yīng)用仍存在較大的提升空間.常州電力監(jiān)測(cè)設(shè)備